试 验 研 究

氨氮负荷对强化生物除磷系统的影响

刘文辉¹, 张 群²,陈 英³, 王金民³

(1.台州市环保局椒江分局,浙江 椒江 318001;2.杭州市余杭区环境保护局,浙江 余杭 311100;3.浙江省工业环保设计研究院有限公司,浙江 杭州 310005)

摘要:强化生物除磷系统由于其除磷的高效性及稳定性,一直是国内外学者研究的热点。 影响强化生物除磷系统正常运行的因素有很多,氨氮便是其中一个很重要的因素。本文旨 在在前人的研究基础上,通过实验研究对比 EBPR 系统及颗粒化 EBPR 系统对不同浓度 氨氮冲击负荷的耐受性。研究结果表明颗粒化 EBPR 系统对氨氮的最大耐受浓度可达 200 mg L⁻¹ 甚至更高,较 EBPR 系统的氨氮耐受负荷高约 10 倍。

关键词:氨氮负荷;强化生物除磷;耐受性

中图分类号:X703 文献标识码:A

1引言

EBPR 系统除磷机理主要为采用厌氧/好氧交 替运行的方式促使 PAOs 得到生长和富集,最后 通过排除富含磷的剩余污泥除去污水中所含的磷 ^[1]。与其他微生物有所不同,PAOs 能够将挥发性脂 肪酸(volatile fatty acid, VFAs)作为所需碳源,厌 氧条件下,PAOs 将 VFAs 作为碳聚合体储存在细 胞体内形成聚-β-羟基链烷脂酸(Poly-β-hydroxyalkanoate, PHA)^[2]。完成这些生物转化反应的能 量大部分来自于多磷酸盐的断裂以及细胞释磷产 生的能量。形成 PHA 的还原能量主要来自于酵解 储存在细胞内的糖原产生^[3-4]。好氧条件下,PAOs 利用形成的 PHA 完成一系列生化反应,包括生物 生长繁殖、糖原的补给、磷的摄取以及多磷酸盐的 储存。通过排放富含高浓度多磷酸盐的剩余污泥 可以实现对污水中磷的全部去除。

对氨氮抑制的研究始于 20 世纪 90 年代末, 当时的研究热点在氨氮对硝化过程的影响。比如, Villaverde 等^[5]研究了氨氮对硝化生物膜的影响, 研究发现,高浓度的氨氮会抑制硝化微生物的活 性,但是经过长时间的稳定驯化,微生物会慢慢适 应一定浓度的氨氮。此后,Vadivelu 等分别研究了 氨氮对 Nitrosomonas 和 Nitrobacter 的代谢过程的 影响^[9]。研究表明,当游离氨浓度为 16 mg NH3-N/

收稿日期:2014-12-10

文章编号:1006-8759(2015)02-0020-04

L时,仍然不会对 Nitrosomonas 的同化和异化过程 产生任何的抑制作用: 而当游离氨浓度为 6 mg NH3-N/L 时,观察到 Nitrobacter 已经停止生长;这 也充分证明了 NOB(nitrite oxidizing bacteria, 亚硝 酸盐氧化菌)比 AOB(ammonia oxidizing bacteria, 氨氧化菌)对氨氮的抑制作用更加敏感。随着颗粒 污泥的广泛应用和好氧颗粒的深入研究,Yang 等 ¹⁰发现,氨氮对好氧颗粒污泥的形成同样也存在负 面的影响,当游离氨浓度高于 23.5 mg/L 时,颗粒 结构便无法形成;同时,游离氨会降低细胞表面的 疏水性,抑制胞外多糖的合成,这些同样也是无法 实现颗粒化的原因。在国内,徐少娟等四首次研究 了进水氨氮浓度对强化生物除磷(EBPR)系统除 磷特性及微生物群落结构的影响。研究发现, EBPR 系统运行的最佳进水氨氮浓度为 15 mg/L, 而 20 mg/L 的进水氨氮浓度对聚磷菌好氧消耗 PHAs 过程存在一定的抑制作用。

2 材料与方法

2.1 试验设计方案

由于高浓度的氨氮对生物活性有一定的抑制,所以其对颗粒化 EBPR 系统中的颗粒污泥也 起到了抑制作用。为了解高浓度氨氮下颗粒污泥 的活性及其除磷效率,故对颗粒污泥进行不同浓 度的梯度试验。就其除磷效率、有机物去除率与颗 粒形态的变化情况,研究分析氨氮抑制条件下的 颗粒污泥活性及其除磷性能。为了研究氨氮对颗 粒化 EBPR 系统除磷效果的影响,对4套 SBR 反 应器添加不同浓度氨氮抑制剂,其中 R1 为对照 组。

根据相关研究[®],颗粒絮状污泥进水氨氮最佳 浓度为 15 mg/L,而当浓度超过 200 mg/L,颗粒化 EBPR 系统的除磷效率就会产生抑制作用,而当浓 度达到 600 mg/L时,系统除磷能力已基本消失。基 于实验室反应器个数,故以 15 mg/L为对照组,以 600 mg/L为浓度上限,设置浓度梯度如表 1 所示。

表1进水	后反应器氨氮浓度 单位:(mg/L)			
反应器	R1	R2	R3	R4
反应器氨氮浓度	15	200	400	600
反应器碳氮比	200/15	200/200	200/400	200/600

本试验采用 4 套完全相同的 SBR 反应器同 时进行(标记为 R1、R2、R3、R4)。试验在恒温实验 室内进行,系统运行过程中室温控制在 (20±2) ℃,溶解氧(DO)控制在 6-7 mg/L,同时利用 0.5 M NaOH 和 0.5 M HCl 调节系统 pH,使其稳定在 7.5-8.0。

系统所用进水为人工合成的模拟废水,其组 分如表 2 所示。

表 2 实验模拟废水组成 单位:

剂名称	物质纯度	试剂用量	生产商
CH3COONa	分析纯	0.256	成都市科龙化工试剂厂
KH2PO4	分析纯	0.0875	成都市科龙化工试剂厂
K2HPO4·3H2O	分析纯	0.147	成都市科龙化工试剂厂
NH4Cl	分析纯	0.2293	成都市科龙化工试剂厂
MgSO4·7H2O	分析纯	0.1805	成都市科龙化工试剂厂
CaCl2	分析纯	0.0222	成都市科龙化工试剂厂
蛋白胨	分析纯	0.0015	南通东海龙生生物制品有限公司
烯丙基硫脲(ATU)	分析纯	0.0012	国药集团化学试剂有限公司
NaClO3	分析纯	0.5112	成都市科龙化工试剂厂
酵母浸膏	分析纯	0.0015	浙江省富阳市富春江酵母厂

此外每升进水中另含丙酸 0.4 mL, 微量元素 0.6 mL,以上试剂配成混合液后迅速加入 SBR 反应 器中,使反应器初始 COD 浓度为 200 mg/L,NH₄⁺-N 初始浓度为 15 mg/L,PO₄³⁻ -P 初始浓度为 10 mg/L。 模拟废水中,ATU 用来抑制系统内的 NH4⁺-N 的氧 化, 而 NaClO₃ 对 NO₂⁻-N 转化为 NO₃⁻-N 有抑制作 用^[9]。微量元素液成份参考 Smolders 等^[10-11]。 2.2 检测指标及分析方法

2.2.1 常规水质指标测定方法

为更好地掌握系统运行动态以及系统的除磷 效果,故每天固定取一个周期的进水段、厌氧尾 段、出水段水样及泥样适量。所有水样测定前经中 速定性滤纸过滤。测定水质指标主要包括化学需 氧量(COD)、正磷酸盐($PO_4^{3-}-P$),氨氮($NH_4^{+}-N$)。 测定的污泥性能指标有污泥浓度(MLSS)、混合液 挥发性悬浮固体(MLVSS)、污泥体积指数(SVI)、 污泥沉降比(SV30)。具体测定方法参考《水和废 水监测分析方法》^[12],分析方法及设备见表 3。

表 3 常规指标分析方法及设备

水质指标	分析方法	仪器
COD	重铬酸钾法	快速消解仪,COD 测定仪
PO4 ³⁻ -P	钼锑抗分光光度法	752 可见光分光光度计
MLSS	称重法	烘箱
$\mathrm{NH_4^+\!\!-\!N}$	纳氏试剂光度法	752 可见光分光光度计
SV ₃₀	30 min 沉降法	100 mL 量筒

2.3 试验装置

本文采用序批示活性污泥法(Sequencing Batch Reactor, SBR)进行相关试验研究。SBR 具有 操作简单和易人为调控等特点,有利于去除污染 物。典型 SBR 工艺分为进水、反应、沉淀、排水及 闲置五个阶段,如图 1 所示。

图 1 SBR 工艺反应流程

本装置有效容积为 10 L,每个 SBR 反应器每 天运行 4 个周期,每个周期 6 h,其中 5 min 进水, 2.5 h 厌氧搅拌,3 h 好氧曝气,5 min 沉淀,5 min 出水 2.5 L 以及闲置 15 min。系统排水比控制在 1/4,系统水力停留时间 (hydraulic retention time, HRT)为 24 h。系统内污泥浓度(mixed liquor suspended solids, MLSS)控制在 2 500 mg/L,污泥停 留时间(solids retention time, SRT)为 8 d。

3 结果与讨论

3.1 氨氮对颗粒化 EBPR 系统除磷性能的影响

随着试验的进行,氨氮对 EBPR 系统的厌氧 释磷和好氧吸磷的影响逐渐明显。图 2 为颗粒化 EBPR 系统的除磷性能情况。

图 2 颗粒化 EBPR 系统除磷性能曲线 (a) 厌氧放磷速率; (b) 好氧吸磷速率; (c) 除磷效率

从图 2 可以看出,反应器初期每一个装置都 具有较高的放磷/吸磷速率,基本稳定在 12 mg P gMLSS⁻¹ h⁻¹ 左右。在添加抑制剂的初期阶段 R1 (C/N=200/15) R2 (C/N=200/200) R3 (C/N=200/ 400)、R4(C/N=200/600)在厌氧阶段除磷速率并未 有较大的下降,能保持在 10 mg P gMLSS⁻¹ h⁻¹ 左 右,主要原因在于颗粒污泥具有一定的耐毒性,可 以在一定时间内忍受外部恶劣条件、维持厌氧段 放磷效果。然而在第8天开始R2开始小幅度降 低其放磷速率,R3、R4则大幅度降低。从反应第 15 d 开始, R1 稳定并保持在 10 mg P gMLSS⁻¹ h⁻ ¹,R2则下降至7mg PgMLSS⁻¹h⁻¹,表明颗粒污泥 对浓度为 200 mg/L 的氨氮具有一定的耐受性,但 仍然受到一定的影响,颗粒污泥的活性被部分抑 制,所以其厌氧阶段的放磷速率有所降低,但并未 大幅度减少。由于 R3、R4 中氨氮浓度过高,对系 统有强烈的抑制作用,在小幅度耐受几天后,它们 的厌氧放磷效率大幅度减少,并在 20 d 时降至 0 mg P gMLSS⁻¹ h⁻¹,并维持稳定。这表明高浓度氨氮 对颗粒污泥具有极强的抑制作用,完全抑制其活 性,使其丧失了放磷能力。

对于好氧阶段的吸磷速率,添加抑制剂的初

期阶段 R1 (C/N=200/15)、R2 (C/N=200/200)、R3 (C/N=200/400)、R4(C/N=200/600)并未有较大的 下降,能保持在 11 mg P gMLSS⁻¹ h⁻¹ 左右,主要原 因在于颗粒污泥具有一定的耐毒性,可以在一定 时间内忍受外部恶劣条件,维持好氧段吸磷效果。 然而在第8d开始R2开始小幅度降低其吸磷速 率,R3、R4则大幅度降低。从反应第15d开始,R1 稳定并保持在 10 mg P gMLSS⁻¹ h⁻¹, R2 则下降至 7 mg P gMLSS⁻¹ h⁻¹,表明颗粒污泥对浓度为 200 mg L-1 的氨氮具有一定的耐受性,但仍然受到一 定的影响,颗粒污泥的活性被部分抑制,所以其好 氧阶段的吸磷速率有所降低,但并未大幅度减少。 由于 R3、R4 中氨氮浓度过高,对系统有强烈的抑 制作用,在小幅度耐受几天后,它们的好氧吸磷效 率大幅度减少, 并在 20 d 时降至 0 mg P gMLSS⁻¹ h-1,并维持稳定。这表明高浓度氨氮对颗粒污泥具 有极强的抑制作用,完全抑制其活性,使其丧失了 吸磷能力。

颗粒化 EBPR 系统的厌氧放磷速率与好氧吸 磷速率的变化直接影响到系统的除磷效率,图3 为颗粒化 EBPR 系统的除磷效率的变化情况。从 图中可以看出, 在添加抑制剂的初期阶段 R1(C/ N=200/15, R2(C/N=200/200), R3(C/N=200/400), R4(C/N=200/600)均保持 100 %的除磷效率。然而 在第9d开始,R2、R3、R4均产生大幅度降低,直 接降为0。引起此现象的原因主要为这些反应器 对外部环境急剧变化产生不适应性、极强的影响 了其除磷效率。经过4天的适应期后,R2,R3,R4都不同程度的恢复,抑制程度最低的 R2 最终能 将其除磷效率恢复至 50 % 左右, 表明颗粒污泥对 氨氮浓度为 200 mg/L 的抑制条件有一定程度的 耐受性。然而,添加高浓度氨氮的 R3、R4 只能恢 复到 3~5 %。这表明,在高浓度氨氮的抑制条件 下,颗粒污泥的活性被完全抑制,只能吸收维持细 胞同化作用的磷用量、从而保证细胞自身的生命 活动,其除磷能力已完全丧失。

3.2 氨氮对颗粒化 EBPR 系统去除 COD 的影响

不同浓度氨氮对 EBPR 系统吸放磷速率的抑制作用直接影响到了系统去除有机物的效率。图3 为颗粒化 EBPR 系统 COD 厌氧段去除率与COD 总去除率的变化情况。从图中可以明显看出:反应器初期对 COD 都具有较高的去除效率,添加抑制剂后,R2 (C/N=200/200)、R3 (C/N=200/

400)、R4 (C/N=200/600) 都产生了不同程度的下降。由于 R2 中抑制剂浓度并未对颗粒污泥产生太大的抑制作用,故其去除率曲线只产生小幅度下降,厌氧段去除率与总去除率能分别稳定在 80 %与 75 %左右。对于 R3、R4,由于添加了高浓度的抑制剂,其厌氧段 COD 在第 10 d 急剧下降并难以恢复。总去除率并未降为 0,原因在于虽然颗粒污泥活性已被抑制,但并未死亡,仍然需要吸收外部营养物质进行自身的生命活动,故仍能吸收小部分 COD 进行细胞本身的同化作用。

图 3 颗粒化 EBPR 系统 COD 去除效率 (a)COD 厌氧去除率;(b)COD 总去除率 3.3 絮状污泥与颗粒污泥对比分析

通过将絮状污泥与颗粒污泥就除磷效果进行 对比分析,可以得出颗粒污泥比絮状污泥具有更 强的耐受性。在相同碳氮比条件下,颗粒污泥的吸 放磷速率均优于非颗粒污泥,如图 4 所示。

(a)C/N=200/15 时厌氧放磷速率比较;(b)C/N=200/15 时好氧吸磷 速率比较; (c)C/N=200/200 时厌氧放磷速率比较;(d)C/N=200/15 时好氧吸 磷速率比较。

在碳氮比为 200/15 及 200/200 情况下,颗粒 污泥在吸磷速率与放磷速率上均优于絮状污泥。 这说明外部环境良好时,颗粒污泥具有更好的除 磷效率,而当外部条件恶化时,颗粒污泥较之絮状 污泥有更强的抗毒性与耐受性,仍能维持较高的 除磷效率,这明显体现了颗粒污泥的优越性。

4 结 论

本试验研究通过 4 个浓度梯度的试验研究氨 氮对颗粒化 EBPR 系统抑制作用。抑制试验运行 25 d,各处理系统的除磷效率、放磷/吸磷速率、颗粒 形态等指标均发生了明显的变化,表明不同浓度的 氨氮对颗粒化 EBPR 系统的运行有着不同的影响。

(1) 各系统的厌氧放磷/好氧吸磷速率均呈现 不同的变化规律。R1 为对照组,吸磷与放磷速率仍 然维持常态,没有出现异常。R2 出现小幅度下降, 其厌氧放磷与好氧吸磷速率均在 6~8 mg P gMLSS⁻¹ h⁻¹ 范围内波动。而 R3、R4 则大幅度下降直至为 0 mg P gMLSS⁻¹ h⁻¹,并最终丧失其除磷能力。

(2)在添加不同浓度抑制剂后,各系统的磷酸 盐去除率产生了显著的差异。R1 稳定在 100 %, 保持着对磷酸盐的完全去除效果。R2 在经过初期 不适应的降低后慢慢恢复到 50 %,表明浓度为 200 mg/L 的氨氮对颗粒具有一定的抑制作用,由 于颗粒污泥自身所具有的耐受性,其活性并未被 完全抑制,仍具有一定的除磷效率。R3、R4 反应器 中因其所添加的抑制浓度过高,故已基本丧失除 磷能力,只能摄取维持其生命活动所需的磷。

(3)各个系统的 COD 去除率以及厌氧段去除 率的变化明显不同。在厌氧段 COD 去除率的比较 中发现 R1 最为稳定,能保持在 100 %。R2 在经过 上下震荡后基本维持在 80 %上下,这表明氨氮对 聚磷菌有部分抑制作用,无法彻底完成对胞内聚 磷的分解,从而影响有机物的吸收。R3、R4 中聚磷 菌的活性已被完全抑制,无法通过分解胞内聚磷 产生能量从而摄取废水中的有机物。

参考文献

[1]Zhou Y, Zeng R, Lu H B, Yuan Z G. Could polyphosphate-accumulating organisms (PAOs) be glycogen –accumulating organisms (GAOs)[J]. Water Research,2008.42(10–11):2361–2368.

·23·

3 技术经济指标

该工程总投资 3 600 万元,于 2007 年投入运 行,总排口出水水质一般可达到设计水质要求: $NH_4^+-N \leq 10 \ COD_{cr} \leq 60 \ SS \leq 50 \ mg/L \ pH6~9$ 。 水处理运行成本为 3.37 元/m³,成本构成见表 1, 其中电费约占总运行成本的 73 %。SBR 需要转换 运行工况实现灵活的间歇操作,涉及的用电设备 多,因而电费较高。药剂费主要为投加苛性钠调节 碱度所产生的费用,由于进水碳氮比较低,反硝化 反应释放的碱度非常有限,为保证 NH_4^+-N 去除 效果,硝化反应消耗的大量碱度需要额外加碱进 行补充。

表 1 运行成本构成

项目	电费	药剂费	人工费	维修费	折旧费	合计
费用	2.46	0.43	0.11	0.17	0.20	3.37

注:单位均为元/m³

总体来说,SBR+过滤工艺对煤制甲醇废水中 的 NH₄⁺-N、COD 及 SS 具有显著的处理效果,运行 方式较为灵活,构筑物设置较为简单,缓冲池对水 量波动大的高氨氮煤气化废水起到了很好的缓冲 作用。长期运行过程中发现该工艺仍存在如下问 题:SBR 电费、药剂费较高、污泥上浮现象频发, 滤池反冲洗频繁,滤料曾出现板结问题。

4 结 语

针对煤制甲醇废水 NH4⁺-N、有机物及 SS 含 量高的水质特点,采用 SBR+过滤工艺进行处理, 可以有效降低废水中主要污染物的含量,使出水 NH4⁺-N、COD、SS 及 pH 达到《山东省南水北调沿 线水污染物综合排放标准》(DB37/599-2006)对重 点保护区域的要求。该组合工艺运行成本为 3.37 元/m³。SBR 工艺运行方式较为灵活,对 NH4⁺-N 及 COD 的去除效果显著,但运行成本较高,仍未解 决活性污泥法污泥易上浮的普遍问题。

参考文献

[1]曾科,买文宁,王敏璞.甲醇生产废水处理技术应用研究[J].化工 设计,2009,19(6):39~41.

[2] 贾永强,李伟,李立敏,等.新型生物组合工艺处理甲醇废水的应用研究[J].环境工程,2014,32(9):23~25.

[3]代伟娜, 贺延龄, 李恒.SBR 法处理煤制甲醇废水工程实例[J].水 处理技术, 2011, 37(10); 128~130.

[4] 杨冬梅.60 万 t/a 甲醇废水处理方法及应用技术改造[J].神华科 技,2011,9(2):90~92.

[5]韩洪军,李慧强,杜茂安,等.厌氧/好氧/生物脱氨工艺处理煤化 工废水[J].中国给水排水,2010,26(6):75~77.

[6]药宝宝,高莺,改良 SBR 工艺处理德士古煤气化废水[J].能源环 境保护,2009,23(6):4~7.

(上接第 23 页)

[2]Mulkerrins D, Dobson A D W,Colleran E.Parameters affecting biological phosphate removal from wastewaters[J].Environment International.2004,30(8): 249–259.

[3]Mino T,Van Lsdrecht, Heijnen J J.Microbiology and biochemistry of the enhanced biological phosphate removal process [J].Water Research,1998,32(11):3193-3207.

[4]Comeau Y,Hall K J,Hancock R E W,et al.Biochemical-model for enhanced biological phosphorus removal [J].Water Research,1986,20 (12):1511-1521.

[5]Villaverde S,Fdz-Polanco F,García P.Nitrifying biofilm acclimation to free ammonia in submerged biofilters.Start-up influence[J]. Water Research, 2000,34(2):602–610.

[6]Vadivelu V M,Keller J,Yuan Z.Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J].Biotechnology and Bioengineering,2006.95(5):830–839.

[7]Yang S F, Tay J H, Liu Y.Inhibition of free ammonia to the for-

mation of aerobic granules [J].Biochemical Engineering Journal, 2004,17(1),41-48.

[8]徐少娟, 蒋涛, 殷峻, 孙培德, 方治国, 钟晓,等. 进水氨氮浓度对 强化生物除磷(EBPR)系统除磷特性及微生物群落结构的影响研 究.环境科学学报, 2011,31(4):745-751.

[9]Oehmen A,Lemos P C,Carvalhoa G,et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J].Water Research, 2007,41(6):2271–2300.

[10]Smolders G J F,Vanadermeij J,Vanloosdrecht M C M, et al. Model of the anaerobic metabolism of the biological phosphorus removal process – stoichiometry and pH influence [J].Biotechnology and Bioengineering,1994,43(6):461–470.

[11]Liu Y, Shi H,Li W,et al. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal [J].Bioresource Technology,2011,10(2), 4008–4012.

[12]国家环保总局.水和废水监测分析方法(第4版)[M].北京:中国 环境科学出版社,2002:201-284.