

岳涛,北京科技大学能源与环境工程学院教授,博士生导师,入选"国家环境保护专业技术 青年拔尖人才"、北京市百千万人才工程,获第一届中国环境科学学会青年科学家奖优秀奖。兼 任中国环保产业协会标准化委员会委员、中国环境科学学会青年科学家专委会常委、中国环保机 械行业协会大气专委会常委等社会职务,主要从事固定源大气多污染物协同控制相关研究工作。 作为主持人或骨干参与国家重点研发计划课题、国家自然科学基金、北京市自然科学基金项目多 项。主持或参与国家环境保护技术政策制修订2项,国家、行业标准5项。获北京市科技进步奖 一等奖1项,环境保护部环境科学技术奖二等奖1项、三等奖2项。出版专著2部,参与出版著 作4部;在《Journal of Hazardous Materials》《Science of the Total Environment》等期刊发表论文 多篇。

李国良, 叶凯航, 耿孟达, 等. 烟气单质汞催化氧化技术研究进展[J]. 能源环境保护, 2023, 37(3): 163-174.

LI Guoliang, YE Kaihang, GENG Mengda, et al. Research progress on catalytic oxidation technologies of gaseous elemental mercury in flue gases[J]. Energy Environmental Protection, 2023, 37(3): 163–174.

烟气单质汞催化氧化技术研究进展

李国良,叶凯航,耿孟达,郑 扬,岳 涛*

(北京科技大学能源与环境工程学院,北京100083)

摘要:本文综述了近年来单质汞(Hg⁰)催化氧化技术的研究进展,重点介绍了钒基催化剂、贵金 属催化剂、过渡金属氧化物催化剂三类 Hg⁰氧化催化剂的研究现状。钒基催化剂汞氧化效率与 烟气中 HCl 和 Cl₂浓度密切相关;以 Au、Ag、Pt、Ru、Pd 等元素作为核心活性位点的贵金属催化剂 由于其对汞原子的选择性强亲和力,是具有应用前景的 Hg⁰氧化催化剂;过渡金属氧化物(Cu、 Mn、Fe、Mo、Ag、Pd、Cr等)表现出较好的中低温 Hg⁰氧化催化剂能力。大多数催化剂在一定温度 下均具有很高的 Hg⁰氧化效率,但烟气中的 NH₃和 SO₂严重抑制了催化剂活性,分别从 94.7%± 3.9%和 83.9%±4.8%降至 66.8%±16.8%和 57.1%±7.5%。在复杂的烟气条件下,单一氧化位点 的金属氧化物不适合作为 Hg⁰氧化催化剂,采用多组分金属氧化物耦合建立多活性反应区域,有 效分析烟气中的 SO₂、NO、NH₃和 Hg⁰吸附反应区域,是设计构建 NO、Hg⁰等多污染物协同控制催 化剂的关键。本文同时讨论了高效 Hg⁰氧化催化剂未来面临的挑战。

关键词:催化剂;汞氧化;贵金属;过渡金属

中图分类号:X701

文章编号:1006-8759(2023)03-0163-12

Research progress on catalytic oxidation technologies of gaseous elemental mercury in flue gases

文献标识码:A

LI Guoliang, YE Kaihang, GENG Mengda, ZHENG Yang, YUE Tao*

(School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: Mercury catalytic oxidation technologies in recent studies are summarized in this study to highlight the present research development and future perspective of catalysts. The mercury oxidation catalysts are classified into V-based catalyst, noble metal catalyst and transition metal oxides catalyst. The mercury oxidation efficiency (MOE) of V-based catalyst strongly depends on HCl and Cl₂ concen-

收稿日期:2023-04-13;责任编辑:金丽丽 **DOI**:10.20078/j.eep.20230504

基金项目:国家自然科学基金(52200121)

作者简介:李国良(1987—)男,河北石家庄人,副教授,主要从事烟气工业烟气多污染物协同治理、碳减排技术开发、重金属监测与物质流方向研究。E-mail: liguolaing@ustb.edu.cn

通讯作者:岳 涛(1980—),男,陕西宝鸡人,教授,主要从事烟气多污染物协同脱除和大气重金属污染防治方向研究。E-mail: yuetao@ustb. edu.cn

trations in the flue gas. The noble metal catalyst (e.g., Au, Ag, Pt, Ru and Pd-based) is a promising mercury oxidation catalyst because of its strong affinity toward mercury atom. The transition metal oxides (Cu, Mn, Fe, Mo, Ag, Pd, Cr, etc.) has also been used to develop low and middle temperature catalysts for Hg⁰ oxidation. Most of these catalysts have very high mercury oxidation efficiencies at a certain temperature, but NH_3 and SO_2 in the flue gas seriously suppress the catalyst activity from 94.7% $\pm 3.9\%$ and $83.9\% \pm 4.8\%$ to $66.8\% \pm 16.8\%$ and $57.1\% \pm 7.5\%$, respectively. It is concluded that pure metal oxides serving as single oxidation site would not be suitable mercury oxidation catalysts in the complex flue gas environment. The multicomponent metallic oxide catalysts generate more species oxidation reaction sites for NO reduction and Hg⁰, which promotes the possibility of NO and Hg⁰ synergic removal. This work also proposes the future challenge of highly efficient Hg⁰ oxidation catalyst.

Keywords: Catalysts; Mercury oxidation; Noble metal; Transition metal

0 引 言

汞,俗称水银,化学符号为 Hg,是一种常温下 可以以气态和液态形式存在重金属。汞在烟气中 主要存在三种形态:气态元素汞(Hg⁰)、气态氧化 汞(Hg²⁺)和颗粒态汞(Hg_n)。在大气环境中汞主 要以Hg⁰形态存在,它可以在大气中停留数月至 一年时间,可以随气流传输到远离排放源的地区, 导致环境中汞浓度的增加,并对健康和经济造成 不可估量的损害[1-3]。因此,汞及其化合物作为全 球性污染物受到研究人员的广泛关注。

2001 年起,联合国环境规划署(United Nations Environment Programme, UNEP)发表了《全球汞评 估报告》(Global Mercury Assessment),对全球汞排 放情况做了详细评估^[4]。为了在全球范围内有效 减少汞的释放、使用和排放,减少汞及其化合物损 害生态环境和人类健康,国际社会于2013年编写 了具有法律约束力的汞文书,生成《关于汞的水俣 公约》,该公约于2017年8月16日生效。公约要 求各缔约方控制并于施行时减少大气汞排放。根

据联合国环境规划署(UNEP)的汞排放数据,全球 主要国家的汞排放达到1431t,化石燃料燃烧占 49.9%^[5-7]。我国是全球大气汞排放量最大的国 家,2017年,我国大气汞人为排放量为444t,大约 占全球大气汞排放量的 30%,所以我国汞控制排 放对全球汞减排具有重要意义[8]。因此,我国大 气汞排放控制也得到全球的广泛关注,面临巨大 的履约压力。

汞化合物在燃烧过程中完全转化为 Hg⁰,随 着温度的降低,部分 Hg⁰转化为 Hg²⁺和 Hg₀^[9]。汞 的化学形态对空气污染控制装置(APCDs)的脱除 效率具有显著影响。湿法烟气脱硫(WFGD)可以 捕获 Hg²⁺,静电除尘器(ESP)、布袋除尘器(FF) 等除尘器可基本去除 Hg。污染物。由于高挥发性 和低水溶性, Hg⁰是最难捕获的化学形态^[10]。以 燃煤电厂为例,目前燃煤电厂的污控措施基本都 具有选择性催化还原催化剂 (Selective Catalytic Reduction, SCR) 或是选择性非催化还原脱硝措 施,布袋除尘或是电除尘设备,WFGD以及湿式电 除尘,如图1所示。

随着我国对 NO_和 SO,控制加严,燃煤工业锅 炉和水泥行业也逐渐增加脱硝设备和湿法脱硫设 备。在此污控条件下,我国计划采用多种污控设 施协同控制的方法降低烟气中汞排放^[6]。烟气 中,99%以上Hg。可以被除尘设备脱除,80%以上 Hg²⁺可以被湿法脱硫设备脱除,但是 Hg⁰很难被污 控设备直接捕获下来^[11-12]。在燃煤烟气中, Hg⁰ 大约占到了烟气 Hg^T的 20% 左右, 在褐煤等低品

位煤炭烟气中, Hg⁰可以占总汞排放的比例高达 80%以上^[13]。因此, Hg⁰的去除是解决燃煤烟气 汞排放的关键问题。通过催化剂将 Hg⁰转化为 Hg²⁺, 再通过脱硫设备捕获 Hg²⁺, 从而依靠现有设 备协同控制有效地减少 Hg⁰排放是控制汞排放的 理想技术途径。因此, 目前协同技术关键步骤是 制备高效 Hg⁰氧化催化剂。

综上所述,随着我国重金属污染防治的重大 需求和《关于汞的水俣公约》行动计划的逐步推 进,我国未来可能通过采用催化氧化和湿法脱硫 协同控制燃煤烟气汞排放。Hg⁰催化氧化是该协 同控制技术的关键步骤。目前,Hg⁰氧化催化剂可 以归为三个大类:钒基脱硝催化剂、贵金属氧化物 催化剂和过渡金属氧化物催化剂^[11, 14-21]。

1 烟气汞催化氧化技术

1.1 钒基催化剂对 Hg⁰的氧化研究

钒基催化剂是选择性催化还原技术中用于将 氮氧化物(NO_x)还原为氮氧化物(N₂)的催化剂。 钒基催化剂氧化汞的机理尚不完全清楚^[22-23]。 一般认为,SCR 催化剂对 NO_x还原和对 Hg⁰氧化分 别在两个区域进行。如图 2 所示,钒基催化剂一 般包括富氨区和贫氨区。NO_x一般在富氨区还原, 由于 NH₃可以与 Hg⁰竞争活性位点,Hg⁰在该区域 的氧化受到抑制。在 NH₃贫氨区,NH₃含量因与 NO 反应而减少,该段为 Hg⁰主要氧化位置。

SCR 催化剂主要是以钒氧化物(V_2O_5)作为 活性物质,钒基催化剂表面的活性氧作为化学氧 化位点吸附并氧化 Hg^0 为 $Hg^{2+[24]}$ 。研究表明,烟 气中的 HCl 对 Hg^0 的氧化性能起到关键作用。 $He^{[25]}$ 使用 $V_2O_5 - WO_3/TiO_2$ 催化剂对 Hg^0 进行催 化氧化测试,HCl 添加使催化剂对 Hg^0 的氧化效率 达到 65%。HCl 对 Hg^0 氧化的促进机理主要包括 两种机制:迪肯制氯(the Deacon process)和表面 活性氯。

(1)迪肯反应指 HCl 在催化剂表面与 02反应

形成 Cl₂和 H₂O^[26],反应机制如下式所示:

 $2\mathrm{HCl} + \mathrm{O}_{2} \longrightarrow 4\mathrm{Cl}_{2} + 2\mathrm{H}_{2}\mathrm{O} \tag{1}$

(2)烟气中的 HCl 也可以吸附在催化剂表面 活性位点 V == 0,生成了具有强氧化性的活性氯 (Cl*),Cl*作为活性位点与 Hg⁰反应,使之被氧 化成氯化汞,具体反应机制如下^[23]:

 $\operatorname{Hg}(g) + 0 = V^{5+} \longrightarrow \operatorname{Hg} \cdots 0 = V^{4+}$ (2)

 $V^{5+} = 0 + HCl \longrightarrow Cl^* - V^{5+} - OH$ (3)

 $2\text{Cl}^* - \text{V}^{5+} - \text{OH} + \text{Hg} \cdots \text{O} = \text{V}^{4+} \longrightarrow \text{HgCl}_2(4)$

在实际烟气中,SCR 反应中 NH₃会强烈抑制 Hg⁰发生竞争吸附与氧化,由于 NH₃浓度远远高于 Hg⁰浓度,从而严重抑 Hg⁰的催化氧化效率,这是 商业钒基催化剂汞氧化性能面临的重要问题。另 外,商业催化剂汞氧化严重依赖 HCl 形成的活性 位点,我国煤炭中 Cl 含量相对较低。商业 SCR 催 化剂对 Hg⁰的催化氧化具有一定的活性,但是这 种活性严重依赖 HCl 形成的 Cl₂或活性 Cl,因而随 着烟气组分和运行条件不同而表现出较大差异。 同时,V₂O₅作为单一活性位点难以同时满足 NO 还原和 Hg⁰氧化的要求。因此,大量研究采用 Mn、 Ru、Ag、Ce 等元素改性 V₂O₅-WO₃/TiO₂,构建双 活性反应中心,促进催化剂 NO 还原与 Hg⁰氧化协 同反应。

如图 3 所示,段钰锋团队采用 Mn 改性 VWTi 催化剂, Mn 元素的引入显著提高 VWTi 催化剂低 温(120~200 ℃) Hg⁰氧化效率从 65.0%±16.7%到

 $\cdot \ 165 \ \cdot \\$

98.0% ±1.1%, 但是在 SO, 和 H, O 条件下, Mn-VWTi的Hg⁰氧化被严重抑制。晏乃强^[27-28]团队 采用 Ru、Ag、Ir 等贵金属元素作为活性剂掺杂脱 硝催化剂,良好的催化活性可以使 Hg⁰完全转化 为Hg²⁺,同时将NH,直接氧化为氮气,从而避免 NH3对 Hg⁰氧化抑制作用,但是 NH3单独存在条件 下依然严重抑制催化剂的 Hg⁰氧化性能。李彩亭 团队^[11]采用 CeO,改性 SCR 催化剂使其 Hg⁰氧化 效率从42.6%提升到88.9%,并且探究了各种烟气 组分对 $V_{0.80}$ WTiCe_{0.25} 催化剂的催化效果影响, SO₂ 和 NH₃降低催化剂的氧化效果到 41.8%~49.7%, NO 促进了催化剂的 Hg⁰氧化效率达到75.1%。因 此,双活性位点的构建促进了钒基催化剂的 Hg^o 氧化效率,同时 SO2、NH3等烟气组分的抑制作用 依然存在,未来需要进一步提高催化剂的抗硫抗 氨性能。

1.2 贵金属氧化物对 Hg[®] 的氧化研究

贵金属(Au、Ag、Pd、Pt等)对可以选择性吸附 Hg⁰,形成固态合金,因此在贵金属催化剂对 Hg⁰ 氧化应用方面具有良好的前景[16,28,35-39]。 Presto^[40]在中试条件下探究了 Au、Pd 和 Pt 贵金 属的催化剂以及烟气组分影响,结果表明:Pd 和 Pt 基催化剂随着时间推移对 Hg⁰氧化效率明显下 降,而Au基催化剂保持了良好Hg⁰氧化性能。Pd 和 Pt 基催化剂失活归咎于长时间的 O,环境暴露 使 Pd 和 Pt 原子转化为氧化物,在 HCl 缺失的条 件下,Hg⁰无法进一步转化为 Hg²⁺。Jason^[40-43]采 用一次浸渍、二次浸渍和喷涂方法制备了各种 Au/TiO₂,喷涂法制备催化剂因负载量高和脉冲过 程中损失量少表现出最佳催化效果,Hg⁰氧化效率 达到40%~60%。在燃煤电厂烟气治理示范过程 中,半年运行时间使Au基催化剂氧化效率从80% 降到 77%,一年运行后降到 57%。研究表明: Au 基催化剂的活性下降并不是因为 SO2 中毒, 而是 由于飞灰堆积对活性 Au 原子的覆盖。Hamoon^[44] 发现 Au 原子对 Hg⁰吸附性能主要依赖于 Au 原子 簇的电荷、空穴以及其他原子掺杂相关,相较于 Au 阳离子而言, Hg⁰原子更容易吸附于 Au 原子位 置,证明 Au 与 Hg⁰原子良好的相容和成键性能。

Ag 同样对 Hg⁰具有良好的吸附能力,通常被 认为是 Hg⁰氧化和捕获的潜在活性成分^[29, 45-53]。 Sun^[49]利用超声波和化学还原方法还原形成了 15 nm纳米银颗粒。纳米银颗粒作为 Ag/4A 沸石 表面的活性位点,与气态 Hg⁰反应生成非晶态银

汞合金。吸附的 Hg⁰从银晶格外边界转移到银粒 子内部消失,说明 Hg⁰先在表面与纳米级银发生 反应,然后逐渐渗透到银粒子内部。Zhao^[47]研究 了掺杂 Ag 纳米颗粒的锆金属有机骨架材料 UIO-66 在烟气中去除 Hg⁰。结果表明:在低温条件下, Hg°脱除主要依赖于银汞合金形成,在高温条件 下,Hg⁰脱除主要依靠活性氧氧化。Pummarin 利 用 DFT 计算研究了 Hg⁰吸附机理,发现银沉积 TiO,复合材料(-0.64~-0.38 eV)对 Hg⁰的吸附相 对较孤立银团簇(-0.37~0.30 eV)和纯 TiO2 (-0.20~0.18 eV)更强,促使电子从 Hg⁰转移到沉 积的银团簇和 TiO2上。瞿赞^[29, 52-53]引入 Ag 提高 Mo-TiO, V,O,-TiO,和CeO,-TiO,催化剂Hg⁰氧化 性能的机理。一方面,在低温条件下,银原子 (Ag⁰)是 Ag-Hg⁰汞齐化过程中银元素的主要存在 形式,混合后的 Hg⁰与吸附的 HCl 相互作用,形成 HgCl,;高温条件下,活性氯原子与气态 Hg⁰发生反 应,形成 HgCl,;另一方面,Ag 改善了 V 和 Ce 元素 的价态,削弱了 $V = O_Ce - O$ 和 Mo - O 的强度, 降低了表面氧解吸的活化能值。

柴立元团队探究了在高浓度(10 000 ppm) SO2有色烟气条件下 Pd/CuCl2/y-Al2O3催化剂对 Hg[°]的氧化性能,结果表明在 HCl 存在条件下,催 化剂对 Hg⁰氧化效率高达 87%,表现出良好的抗 硫性^[54]。Stephen 用铂、钯硝酸溶液作为改性剂浸 渍 Al₂O₃, 形成烟气 Hg⁰吸附剂 Pt/Al₂O₃和 Pd/ Al₂O₃₀ Pt 和 Pd 在 204~371 ℃范围内对气体 Hg⁰ 有良好的吸附, 汞吸附量随金属负载量的增加而 成比例增加。Hg⁰吸附在 Pd/Al₂O₃上生成了固体 Pd-Hg 汞齐化合物。Albert^[40-41]研究了在不同 HCl 和 0,浓度下,质量分数 1%的 Au、Pd 和 Pt 负 载在 2 mm 氧化铝珠上的汞氧化能力。实验结果表 明,Pd、Pt基催化剂的反应速率和催化活性随时间 的推移逐渐降低,而 Au 基催化剂的活性在整个实 验时间内保持较高。这种失活行为归因于 Pt 和 Pd 氧化物的 O_2 消耗导致缺乏 Hg^0 氧化的氧化剂。

贵金属(Ru 和 Ir)对催化剂的氧化活性和抗 SO₂/NH₃性能均有促进作用。晏乃强团队^[28]发现 钌(Ru)改性 SCR 催化剂在低 HCl 浓度下对 Hg⁰ 氧化具有较高的催化活性,Ru 改性明显提高了 Hg⁰化和 NH₃氧化能力。此外,Hg⁰的氧化主要依 赖于活性氯(Cl*),而不是 Cl₂,SO₂抑制氯原子结 合形成 Cl₂,但对 Cl*的生成影响很小。晏乃强团 队^[28]采用溶胶-凝胶法和浸渍法改性 IrO₂。溶胶 -凝胶法促使 IrO₂在催化剂表面分散性更好,因此 表现出改性效果更高。一方面,IrO₂改性增加了化 学吸附氧的补充;另一方面,IrO₂促进 Cl 原子结合 形成 Cl₂和 HCl 生成活性 Cl *, Cl₂和 Cl * 分别与 气相中的 Hg⁰反应提高催化剂表面吸附态汞 (Hg_{ad})。这两种机制的主要区别在于吸附的 Hg⁰ 和 HCl 是否首先被活性物质氧化。同时,IrO₂的 掺杂对两种氧化过程都有促进作用。

综上所述,贵金属催化剂由于特有 Hg⁰亲和 性,在低温条件下形成汞齐化合,可以作为 Hg⁰氧 化的第一步,达到一定的抗 SO₂和抗 NH₃效果;高 温条件下,贵金属催化剂依然依靠活性氧或活化 氯达到 Hg⁰氧化的效果。尽管贵金属氧化物对 Hg⁰具有良好的催化活性,但是其高昂的价格使催化 剂造价过高,成为其在实际中广泛应用的重要障碍。

1.3 过渡金属氧化物对 Hg[®] 的氧化研究

过渡金属(如Cu、Mn、Fe)氧化物因为具有价 格低廉、活性高的特点而被广泛用来催化氧化烟 气中的 Hg⁰。图 4 系统分析了 Fe、Mn、Ce 和 Co 基 催化剂的汞氧化性能。Xu^[55]利用 HZSM-5 分子 筛和 Fe 作为载体和活性剂制备出了用于汞氧化 的 Fe/HZSM-5 催化剂, 汞氧化实验结果表明 275 ℃ 左右具有最高的氧化效率,几乎达到100%,说明 催化剂具有很高的催化氧化 Hg⁰活性。但是,这 种材料容易与烟气中 SO,发生反应,形成中毒。 Yang 探究了 CuMn/Ti 催化剂对 Hg⁰的氧化效果, 结果表明在 SCR 环境条件下催化剂汞氧化效率达 到了95%以上,但是SO2的出现使催化剂氧化效 率降低到40%以下[56],这种材料也面临同样的问 题:催化剂与 SO2发生反应产生硫酸盐化合物占 据活性氧,抑制 Hg⁰吸附与氧化,产生 SO,中毒现 象。Wen 等发现 NO 明显提高 CeO₂/γ-Al₂O₃催化 剂的汞氧化性^[57]。NO和 O₂提高 Co 基催化剂的 汞氧化性,200~1 000 ppmNO 使汞氧化效率从 95%上升到98%^[58]。但是相反的结果也有报道, Li 等^[59]发现通过添加 HCl 促进 Deacon 反应,提 高了催化剂汞氧化效率,但是 NO 在无氧条件下 由于竞争作用,抑制了 Hg⁰的氧化。这是因为无 氧条件下 NO 无法转化为汞氧化位点 NO₂^[55, 60-61]。综上所述, Cu、Mn 和 Fe 等过渡金属 氧化物在低温窗口对 Hg⁰有很强的催化氧化活 性,但是这种活泼的金属氧化物同样容易与 SO, 发生反应而中毒,并且在中高温温度窗口氧化活 性较差。

图 4 过渡金属氧化物催化剂汞氧化性能^[52, 55, 58, 62-63] Fig. 4 Hg⁰ oxidation efficiency of transition metal oxides catalysts^[52, 55, 58, 62-63]

铈氧化物具有良好的催化氧化活性和多种价态变化受到了催化领域的广泛关注^[64-66]。研究发现,由于铈氧化物中 Ce⁴⁺/Ce³⁺氧化还原电对可以通过吸氧放氧自由变换,所以铈氧化物具有较高的氧化还原活性和活性氧储存性能^[66]。在铈基催化剂表面通过吸氧放氧过程形成了大量不饱和氧空穴、不饱和电子空穴、活性氧等活性位点,这些活性位点较高的氧化还原性能促进了催化氧化反应的发生^[67]。研究表明铈氧化物 Ce⁴⁺/Ce³⁺氧化还原电对产生活性空穴和活性氧的过程如下^[67]:

 $4\mathrm{Ce}^{4+} + \mathrm{O}^{2-} \longrightarrow 4\mathrm{Ce}^{4+} + 2\mathrm{e}^{-} / \Box + 0.5\mathrm{O}_{2} \longrightarrow$

 $2Ce^{4+} + 2Ce^{3+} + \Box + 0.5O_2$ (5) 式(5)中"□"代表活性氧空穴和电子空穴。铈氧 化物表面的活性氧可以作为 Hg^0 氧化反应活性位 点,电子空穴可以吸收传递电子,促进 Hg^0 向 Hg^{2+} 的转移,氧空穴可以促进氧原子传递和活性氧的 补充,这些特点均有利于 Hg^0 氧化反应的进行^[24]。

铈氧化物表现出良好的烟气脱硝活性,可以 作为 V 元素的理想替代活性剂^[68-69],但是高低温 度下 SO₂和 H₂O 对催化剂影响差异比较大,350 ℃ 以上时,SO₂和 H₂O 对催化剂的活性影响不大,这 可能是高温条件下 SO₂和 H₂O 吸附性能较低;低 于 300 ℃时,SO₂和 H₂O 对催化剂的活性抑制作用 显著,并且停止添加后,催化剂活性仍然不能恢 复,说明 Ce 基催化剂的抗硫抗水性还有待于进一 步提高^[68]。CeO₂催化剂也被广泛用于 Hg⁰的催化 氧化并在特定温度窗口表现出良好的活 性^[57,70-72]。Wen等研究了CeO₂/γ-Al₂O₃催化剂 对Hg⁰的催化氧化,结果显示催化剂表明在150~ 430℃区间Hg⁰氧化效率约为65%~85%^[57]。

近些年来,研究发现 Ce 氧化物对 Hg⁰具有良 好的催化氧化能力^[73-74]。Wang 等研究了 Ce – Mn/Ti 催化剂对 Hg⁰的氧化性能,结果表明催化剂 在 250 °C 对 Hg⁰氧化效率超过 90%,同时具有良 好的脱硝表现,但是较窄的反应温度窗口和较差 的抗硫性限制了其应用^[73]。He 等利用溶胶 –凝 胶法制得 CeO₂/TiO₂ – PILCs 催化剂,实验发现 Ce 含量 15% 时催化剂汞氧化效率最高, HCl 通过 Deacon 反应将 Hg⁰氧化为氯化汞^[75]。

W氧化物(WO₃)被认为是SCR催化剂最为 有效的促进剂。钨氧化物加入有利于提高 SCR 催 化剂表面酸性,提高对 NH,吸附能力,有利于拓宽 催化剂反应温度窗口;同时 WO,可以降低氨和 SO,的氧化以及提高抗K性;WO,的重要作用是提 高 B-酸位点的酸性、强度和密度,从而提高氨的 吸附和反应^[76]。另外, WO3可以促进 Ce 的还原, 稳定 Ce 氧化性,从而有利于提高 Ce-SCR 催化剂 的脱硝活性。鉴于 Ce 和 W 氧化物的良好活性, 已有研究将两者优点结合,利用 Ce-W 共氧化物 促进 Hg⁰的氧化,结果表明在 HCl 存在条件下 CeO₂-WO₃/Ti 催化剂在 200~400 ℃温度窗口范 围内对 Hg⁰的氧化效率高于 90% 以上,但是抗水 性较差,8%H,0添加使催化剂氧化效率下降到 60%~80%,并且 CeO2-WO3/Ti 催化剂汞氧化活 性过分地依赖 HCl^[70-71]。因此,尽管铈钨催化剂 具有良好的活性,但是铈钨钛催化剂较差抗水性以 及对 HCl 的依赖性,造成铈钨催化剂在 HCl 缺失条 件下的氧化活性和抗水性还有待于进一步改善。

因此,过渡金属氧化物催化剂以其种类多 样、化学性质活泼等优点可以满足于低温条件下 对 Hg⁰催化氧化的要求。但是由于过渡金属催 化剂活泼的化学性质导致催化剂对 SO₂和 NH₃ 具有较好的吸附性,造成催化剂抗 SO₂和抗 NH₃ 性能较差。

综上所述,本研究在总结 V 基催化剂、贵金属 催化剂和过渡金属催化剂的基础之上,总结 Hg^o 催化氧化研究存在的难点包括三点:(1)NH,与 Hg⁰竞争活性位点,单一位点无法满足脱硝和 Hg⁰ 氧化协同催化;(2)SO,、H,O 会与 Lewis 酸位点反 应,导致催化剂活性位点失活,造成 Hg⁰氧化活性 降低;(3)构建 Hg⁰催化活性位点,提高金属氧化 物吸氧放氧循环能力,增加 Lewis 酸位点数量,提 高催化剂协同脱除 Hg⁰能力。如图 5 所示,本研究 认为未来研究应关注在多活性位点的构建,分离 不同污染物的吸附反应区域,降低污染之间竞争 和干扰。Cu、Fe 等金属氧化物可以作为强碱性活 性位点,W、Mo 等金属氧化物可以作为酸性活性 位点,贵金属元素和 Ce、V 等元素可以作为 Hg⁰吸 附和氧化中心。通过结构优化和酸碱调控化构建 酸性中心、碱性中心以及氧化中心,使碱性气体 (NH₃)、酸性气体(NO、SO₂、HCl等)以及 Hg⁰等污 染物分别吸附在酸性中心、碱性中心以及氧化还 原中心,减少竞争吸附造成的催化剂失活,达到协 同催化脱除 NO 和 Hg⁰多种污染物的效果。

2 烟气组分相互影响机理

2.1 常规污染物影响

不同烟气组分(HCl、NO、SO₂、H₂O等)对汞催 化氧化的影响也是学者研究的重点^[55,77]。烟气 组分、浓度、运行条件等因素都可能导致催化氧化 汞氧化效果差异,因此不能忽视烟气条件对催化 剂氧化 Hg⁰的影响^[24]。张军营团队^[59,78]详细地 研究了 CeO₂/TiO₂型催化剂在各种烟气组分对 Hg⁰的催化氧化性能。结果表明:Ce1.5Ti 催化剂 在 250 ℃时 Hg⁰氧化效率达到 95%;烟气中 HCl 对 Hg⁰氧化效率提高起到重要作用,主要通过迪 肯制氯反应将 Hg⁰转化为 Hg²⁺;由于竞争吸附,烟 气 NO 会轻微地抑制 Hg⁰催化氧化。但是相反的 结论也有报道, Wen 等发现 NO 的出现明显提高 了 $CeO_2/\gamma - Al_2O_3$ 催化剂汞氧化效率^[57]。常化振 团队^[79]采用不同 pH 沉淀溶液制备 VMo/Ti 和 CeMoO,催化剂,形成强碱性、中强碱和弱碱性活 性位研究催化剂协同脱硝脱汞反应和中毒机制。 结果表明:HCl优先与强碱性活性位反应,造成 NO、NH₃的 SCR 反应失活,但是促进了 Hg⁰氧化为 HgCl₂;NH₃与 Hg⁰竞争活性位,造成 Hg⁰氧化效率 下降,研究结果建议平衡催化剂表面酸碱性有利 于促进 Hg⁰氧化效率。H₂O 对 Hg⁰氧化抑制作用 主要发生在低温条件下,水分子在催化剂表面形 成水膜,阻碍了 Hg⁰向催化剂表面活性位点的迁 移^[29];中高温条件下,H,O对Hg⁰氧化抑制作用相 对较小^[80]。

 SO_2 是影响 Ce 基催化剂的重要因素^[81]。当 SO_2 浓度低于 400 ppm 时, CeO₂/TiO₂催化表面可 以将 SO₂氧化为 SO₃,进一步将 Hg⁰氧化成 HgSO₄, 从而促进 Hg⁰氧化效率;当 SO₂浓度上升到 1 000 ppm 时, Hg⁰氧化效率急剧下降,这是因为高浓度 的硫氧化物与 Hg⁰发生强烈的竞争吸附, SO₂在催 化剂表面占据 CeO₂,形成大量硫酸盐,导致活性 位点永久失活,致使 Hg⁰不能接触到活性位点,从 而使氧化反应难以进行^[59, 82-83]。

Senior^[84]采用一个动力学模型,用于测试燃 煤电厂通过 SCR 催化剂 Hg⁰氧化效率,该模型考 虑了多孔 SCR 催化剂内部的扩散以及 NH₃和 Hg⁰ 对催化剂活性位的竞争,对 8 种不同的钒基催化 剂均有较好的拟合效果。拟合结果表明,HCl 对 汞氧化具有促进作用,而 NH₃对汞氧化有相反作 用。Kamata^[85]也指出,当 HCl 浓度增加到 4.5 ppm 时,V₂O₅(WO₃)/TiO₂催化剂的汞氧化效率从 80%提高到 100%,而当 NH₃/NO 比例增加到 1.0 时,汞氧化效率降低到零。沈伯雄团队^[60-61]系统 探究了 NO 和 NH₃对 6Ce6MnTiP 催化剂的汞氧化 活性的影响。结果表明,由于 NH₃与 Hg⁰的竞争吸 附,NO 和 NH₃的共存抑制了催化剂对汞的吸附。

本研究总结了 NO、HCl、SO₂、NH₃、H₂O 等烟气 组分对 V 基催化剂、贵金属催化剂和过渡金属催化 剂的 Hg⁰氧化性能影响机制^[27-34, 52, 55, 58, 60-63, 79]。 NO 和 HCl 主要表现为促进催化剂 Hg⁰氧化效率,

NO和HCl在催化剂吸附位点形成-NO,、Cl*、Cl,等 官能团,促进 Hg⁰氧化为 Hg(NO₃)₂和 HgCl₂^[55, 60-61]。 如图 6 所示,我们总结了关于 SO,和 NH,影响的研 究文献^[27-34, 55, 60-61],结果表明:不含 SO₂的烟气 Hg⁰氧化效率为 94.7% ± 3.9%, 但添加 SO₂之后, Hg⁰氧化效率下降到 66.8% ± 16.8%; 不含 NH₃ 的烟气 Hg⁰氧化效率为 83.9% ±4.8%, 但添加 NH₃之后, Hg⁰氧化效率下降到 57.1% ±7.5%。 SO,和催化剂活性位点形成硫酸盐,造成活性位 点失活,NH3与Hg°对活性位点的竞争造成Hg° 氧化效率,因此,SO,和NH,为催化剂Hg⁰性能 下降的主要原因。由于 SO,和 NH,烟气浓度远 高于 Hg⁰,所以 Hg⁰很难在相同活性位点竞争过 程中表现出高于 SO₂和 NH₃吸附性能。基于以 上结论,有效地分离 SO2、NH3和 Hg⁰的吸附反 应区域,降低 SO,和 NH,对 Hg⁰的竞争作用,提 高催化剂的催化氧化活性,是提高催化剂对 Hg⁰氧化效率的重要途径。

Fig. 6 Poisoning and deactivation mechanism of Hg⁰ oxidation catalyst^[27-34, 52, 55, 58, 60-63, 79]

2.2 非常规污染物影响

目前对于 Hg⁰氧化催化剂烟气组分的影响主 要集中于常规污染物的研究,而对于非常规污染 物(碱金属、碱金属、CO₂、二噁英等)的影响研究 相对较少。碱金属和碱土金属对催化剂的影响主 要集中于 SCR 脱硝反应。张登松团队^[86-87]系统 研究了铈基催化剂碱金属中毒机制,发现碱金属 和活性位点反应形成稳定化合物,导致催化剂表 面酸性下降和活性位失活;引入 SO₄²⁻或Fe₂(SO₄), 酸性官能团,使K优先与酸性官能团反应,迁移到 晶体内部,保护了表面 CeO,活性。李想^[88]研究了 碱土金属 CaO 对 CeO2-WO3和 V2O2-WO3/TiO2催 化剂的中毒影响,发现 CaO 中毒生成 CaWO4和 Ce4+,提高了催化剂表面吸附氧、还原性以及 Lewis 酸位点,促进 NO,的形成,弥补了催化剂表 面酸性下降;但是催化剂表面 Brønsted 酸位点减 少致使 NH₃吸附能力下降,由于 CeO₃-WO₃表面 酸性要高于 V,O5-WO3/TiO,催化剂,所以 CaO 对 CeO₂-WO₃/TiO₂催化剂的影响更小^[88]。万奇团 队^[70-71]系统地探究了碱金属和碱土金属对 V₂O₅-WO₃/TiO₂的 Hg⁰氧化能力影响。各种碱金属和碱 土金属对催化剂的失活影响顺序为:K> Na~Ca > Mg,并且随着K离子负载量增加,催化剂Hg⁰氧化 能力逐渐下降。通过表征分析发现碱金属和碱土 金属负载导致催化剂表面酸性和活性氧含量下 降,主要由于K等金属离子与表面活性Cl*、活性 氧反应,形成稳定的 KCl 和 KVO₃,造成催化剂 Hg⁰活性位点的失活。

随着双碳目标的推进,大量锅炉采用富氧燃 烧技术,烟气中 CO₂浓度显著提高,高浓度条件下 Hg⁰催化氧化同样值得关注。沈伯雄团队^[89-90]系 统地研究各种浓度 CO₂条件下,钒基催化剂对 Hg⁰ 氧化效率。CO₂浓度从 12%上升到 50%时,钒基 催化 Hg⁰脱除效率略微下降;CO₂浓度进一步上升 到 80%,Hg⁰脱除效率明显上升。这可能是低浓度 条件下,CO₂与 Hg⁰发生竞争吸附;CO₂高浓度条件 下,CO₂在催化剂表面形成活性位点。进一步研究 CO₂对催化剂 Hg⁰氧化效率影响发现,80% CO₂添 加明显提高了催化剂 Hg⁰氧化效率,作者认为 CO₂ 吸附在 V₂O₅的活性位点形成 Hg⁰吸附氧化位点 —C —O和 COOH,在 O₂和 NO 的条件下,吸附态 Hg⁰进一步氧化为 HgO 和 Hg(NO₃)₂。

二噁英(PCCD/Fs)、持久性有机污染物 (POPs)等新型污染物逐渐被国家所重视,如何实 现 NO、VOCs和汞多污染物协同控制已经成为目 前研究的重点。彭悦^[91-95]研究了 HCl和氯苯共 同作用下对 MnCe和钒基催化剂的中毒影响,结 果发现 HCl 对催化剂氧空穴攻击为催化剂失活的 主要因素,氯苯在低温条件下不完全氧化产生的 焦炭可以在 SCR 催化反应过程中被 NO₂进一步氧 化为 CO₂和 HCl。根据以上研究可知,NO₂和 HCl 的存在可以极大地促进 Hg⁰的氧化,使 Cl 离子以 HgCl₂的形式存在,减少催化剂中毒,所以 NO、PC-CD/Fs 和 Hg⁰协同催化可能是一种多污染高效协 同脱除路径。如图 7 所示,未来催化剂在 NO、PC-CD/Fs 和 Hg⁰协同脱除方面应该构建不同的吸附 反应区域,达到 NO 还原与 PCCD/Fs 和 Hg⁰氧化 协同发生,减少不同污染物的竞争吸附,促进污染 物催化过程中间产物(-NO₂)或最终产物(HCl)对 Hg⁰氧化效果,最终达到多污染物协同脱除的效果。

图 7 Hg⁰等多污染物协同催化脱除技术反应机理^[91-95] Fig. 7 Reaction mechanism of multi-pollutants synergy catalysis removal^[91-95]

3 结论与展望

本文系统综述了 Hg⁰催化氧化的最新研究进展,着重介绍了催化剂的研究现状和发展前景。 将 Hg⁰氧化催化剂分为钒基催化剂、贵金属催化 剂和过渡金属氧化物催化剂,对催化剂的优缺点 进行了详细的阐述和讨论。钒基催化剂汞氧化能 力主要依赖于烟气中 HCl 和 Cl₂的浓度。贵金属 催化剂在酸性气体中对 Hg⁰有选择性吸附,有利 于催化剂抗 SO₂和抗 NH₃。过渡金属氧化物在中 低温下具有良好的 Hg⁰氧化性能,但 NH₃和 SO₂严 重抑制了催化剂活性。过渡金属氧化物催化剂在 低温下的耐 NH₃和 SO₂性能是亟待解决的问题。

SO₂和 NH₃与气态 Hg⁰竞争活性位点,导致催 化剂失活。从目前的研究可以看出,纯金属氧化 物作为单一氧化位点并不适合烟气中汞的催化氧 化。多种金属氧化物分别为 SO₂和 Hg⁰提供更多 的活性位点。催化剂表面的碱度增强是提高耐氨 性能的可行途径。因此,在 SO₂和 NH₃存在下,通 过多种金属组合和碱酸性质的调整,进一步提高 Hg⁰氧化催化剂抗硫抗氨性。此外,在 SO₂和 NH₃ 存在下,贵金属(Au、Pt、Pd 和 Ag)对 Hg⁰有很好的 选择性吸附能力,贵金属可以吸附汞作为 Hg⁰氧 化的第一步。 现有的汞氧化催化剂反应温度窗一般在 200 ℃ 以上。在目前的研究中,高效的低温汞氧化催化 剂尚不多见。低温催化剂可以放置在除尘设备之 后,从而降低 NH₃的负面影响,因此,低温汞氧化 催化剂是一项重要的研究内容。低温催化剂可以 吸附氧化 Hg⁰生成 HgO,但低温脱附 HgO 是一个 关键问题。因此,未来研究方向应是降低脱附能 和反应温度。

参考文献(References):

- [1] United Nations Environment Programme (UNEP). Sources, emissions, releases and environmental transport[R]. Geneva: United Nations Environment Programme, 2002.
- [2] United Nations Environment Programme (UNEP). The global atmospheric mercury assessment: Sources, emissions and transport [R]. Geneva: United Nations Environment Programme, 2008.
- XING Mengmeng, SUN Qian, ZENG Chun, et al. Modulating Cu⁺ distribution on the surface of Ce-doped CuO composite oxides for SO₂-resistant NH₃-selective catalytic reduction of NO
 [J]. RSC Advances, 2017, 7(31): 18830-18837.
- [4] United Nations Environment Programme (UNEP). Minamataconvention on mercury[R]. Kumamoto: United Nations Environment Programme, 2013.
- [5] PANDE Ashwini, NIPHADKAR Prashant, PANDARE Kiran, et al. Acid modified H-USY zeolite for efficient catalytic transformation of fructose to 5-Hydroxymethyl furfural (Biofuel precursor) in methyl isobutyl ketone-water biphasic system [J]. Energy & Fuels, 2018, 32(3): 3783-3791.
- [6] WU Qingru, WANG Shuxiao, LIU Kaiyun, et al. Emissionlimit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the Implementation of the minamata convention [J]. Environmental Science & Technology, 2018, 52(19); 11087-11093.
- [7] WU Qingru, LI Guolaing, WANG Shuxiao, et al. Mitigation options of atmospheric Hg emissions in China [J]. Environmental Science & Technology, 2018, 52(21): 12368-12375
- [8] WU Qingru, WANG Shuxiao, LI Guoliang, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014 [J]. Environmental Science & Technology, 2016, 50(24): 13428-13435.
- [9] PRESTO Albert A, GRANITE Evan J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environmental Science & Technology, 2006, 40(18): 5601-5609.
- [10] WU Qingru, LI Guoliang, WANG Shuxiao, et al. Mitigation options of atmospheric Hg emissions in China [J]. Environmental Science & Technology, 2018, 52 (21): 12368 -12375.
- [11] ZHAO Lingkui, LI Caiting, ZHANG Jie, et al. Promotional effect of CeO₂ modified support on V₂O₅-WO₃/TiO₂ catalyst for elemental mercury oxidation in simulated coal-fired flue

gas[J]. Fuel, 2015, 153(1): 361-369.

- [12] LIU Zhouyang, LI Xin, LEE Joo Youp, et al. Oxidation of elemental mercury vapor over γ-Al₂O₃ supported CuCl₂ catalyst for mercury emissions control[J]. Chemical Engineering Journal, 2015, 275(1): 1–7.
- [13] GUO Xin, ZHENG Chuguang, XU Minghou. Characterization of mercury emissions from a coal-fired power plant[J]. Energy & Fuels, 2007, 21(2): 898-902.
- [14] DRANGA Beatrice Andreea, LAZAR Liliana, KOESER Heinz. Oxidation catalysts for elemental mercury in flue gases—A review[J]. Catalysts, 2012, 2(4): 139–170.
- [15] SENFTLE Thomas P, VAN Duin Adri C T, JANIK Michael J. Methane activation at the Pd/CeO₂ interface[J]. ACS Catalysis, 2017, 7(1): 327-332.
- [16] YAN Naiqiang, CHEN Wanmiao, CHEN Jie, et al. Significance of RuO₂ modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas [J]. Environmental Science & Technology, 2011, 45(13): 5725-5730.
- [17] CHEN Chuanmin, JIA Wenbo, LIU Songtao, et al. Simultaneous NO removal and Hg⁰ oxidation over CuO doped V₂O₅ WO₃/TiO₂ catalysts in simulated coal fired flue gas [J]. Energy & Fuels, 2018, 32(6): 7025–7034.
- USBERTI Nicola, ALCOVE Clave Silvia, NASH Michael, et al. Kinetics of Hg oxidation over a V₂O₅/MoO₃/TiO₂ catalyst: Experimental and modelling study under DeNO_x inactive conditions[J]. Applied Catalysis B: Environmental, 2016, 193 (3): 121-132.
- [19] LI Hailong, WU Changyu, LI Ying, et al. Superior activity of MnO_x-CeO₂/TiO₂ catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B: Environmental, 2012, 111-112(3): 381-388.
- [20] LIU Dongjing, ZHOU Weiguo, WU Jiang. Effect of Ce and La on the activity of CuO/ZSM-5 and MnO_x/ZSM-5 composites for elemental mercury removal at low temperature [J]. Fuel, 2017, 194(3): 115-122.
- [21] SUN Shujuan, ZHANG Dongsheng, LI Chunyu, et al. Density functional theory study of mercury adsorption and oxidation on CuO(111) surface[J]. Chemical Engineering Journal, 2014, 258(6): 128-135.
- [22] ZHAO Bo, LIU Xiaowei, ZHOU Zijian, et al. Mercury oxidized by V₂O₅-MoO₃/TiO₂ under multiple components flue gas: An actual coal-fired power plant test and a laboratory experiment[J]. Fuel Processing Technology, 2015, 134(6): 198-204.
- [23] LIU Ruihui, XU Wenqing, LI Tong, et al. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V₂O₅ WO₃/TiO₂ SCR catalyst [J]. Journal of Environmental Sciences (China), 2015, 36(4): 76–83.
- [24] GAO Yanshan, ZHANG Zhang, WU Jingwen, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases [J]. Environmental Science & Technology, 2013, 47(19): 10813-10823.
- [25] HE Sheng, ZHOU Jinsong, ZHU Yanqun, et al. Mercury oxi-

能源环境保护

dation over a vanadia – based selective catalytic reduction catalyst[J]. Energy & Fuels, 2009, 23(1): 253-259.

- XU Liwen, WANG Chizhong, CHANG Huazhen, et al. New insight into SO₂ poisoning and regeneration of CeO₂ - WO₃/ TiO₂ and V₂O₅-WO₃/TiO₂ catalysts for low-temperature NH₃ -SCR[J]. Environmental Science & Technology, 2018, 52 (12): 7064-7071.
- [27] CHEN Wanmiao, MA Yongpeng, YAN Naiqiang, et al. The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR – Plus catalysts [J]. Fuel, 2014, 133 (4): 263–269.
- [28] CHEN Wanmiao, PEI Yang, HUANG Wenjun, et al. Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation [J]. Environmental Science & Technology, 2016, 50(5): 2564-2572.
- [29] ZHAO Songjian, QU Zan, YAN Naiqiang, et al. The performance and mechanism of Ag-doped CeO₂/TiO₂ catalysts in the catalytic oxidation of gaseous elemental mercury[J]. Catalysis Science & Technology, 2015, 5(5): 2985-2993.
- [30] YAN Naiqiang, CHEN Wanmiao, CHEN Jie, et al. Significance of RuO₂ modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas [J]. Environmental Science & Technology, 2011, 45(13): 5725-5730.
- [31] CHEN Chuanmin, JIA Wenbo, LIU Songtao, et al. Catalytic oxidation of elemental mercury over CuO modified commercial SCR catalyst [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3903-3910.
- [32] CHEN Wanmiao, MA Yongpeng, QU Zan, et al. Mechanism of the selective catalytic oxidation of slip ammonia over Ru – modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy [J]. Environmental Science & Technology, 2014, 48(20): 12199 -12205.
- [33] GAO Yansha, ZHANG Zhang, WU Jingwen, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19): 10813-10823.
- [34] ZHAO Songjian, MA Yongpeng, QU Zan, et al. The performance of Ag doped V₂O₅ - TiO₂ catalyst on the catalytic oxidation of gaseous elemental mercury[J]. Catalysis Science & Technology, 2014, 4(11): 4036-4044.
- [35] DRANGA Beatrice Andreea, LAZAR Liliana, KOESER Heinz. Oxidation catalysts for elemental mercury in flue gases—A review[J]. Catalysts, 2012, 2(1): 139–170.
- [36] ZHAO Songjian, QU Zan, YAN Naiqiang, et al. Ag-modified AgI-TiO₂ as an excellent and durable catalyst for catalytic oxidation of elemental mercury [J]. RSC Advances, 2015, 5 (39); 30841-30850.
- [37] KHAMDAHSAG Pummarin, KHEMTHONG Pongtanawat, SITTHISUWANNAKUL Kannika, et al. Insights into binding mechanism of silver/titanium dioxide composites for enhanced elemental mercury capture[J]. Materials Chemistry and Physics, 2018, 215(1): 1-10.

- [38] CAI Ji, SHEN Boxiong, LI Zhuo, et al. Removal of elemental mercury by clays impregnated with KI and KBr[J]. Chemical Engineering Journal, 2014, 241(6): 19–27.
- [39] YANG Shu, LIU Cao, LIU Zhilou, et al. High catalytic activity and SO₂-poisoning resistance of Pd/CuCl₂/γ-Al₂O₃ catalyst for elemental mercury oxidation [J]. Catalysis Communications, 2018, 105(1): 1-5.
- [40] PRESTO Albert A, GRANITE Evan J. Noble metal catalysts for mercury oxidation in flue gas[J]. Platinum Metals Review, 2008, 52: 144–154.
- [41] HRDLICKA Jason, ASEAMES Wayne, SMANN Michael D. et al. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environmental Science & Technology, 2008, 42(24): 6677-6682.
- BLYTHE G, MILLER C, FREEMAN B, et al. Pilot testing of mercury oxidation catalysts for upstream of Wet FGD systems
 [R]. Austin: Office of Scientific & Technical Information Technical Reports, 2002.
- BLYTHE Gary, PARADIS Jennifer. Full-scale testing of a mercury oxidation catalyst upstream of a Wet FGD System[R].
 Austin: Electric Power Environmental Protection, 2010 1 -110.
- [44] SHAMOON Ahmad Siddiqui, NADIR Bouarissa, TABISH Rasheed, et al. Quantum chemical study of the interaction of elemental Hg with small neutral, anionic and cationic Aun (n = 1-6) cluster[J]. Materials Research Bulletin, 2013, 48(3): 995-1002
- [45] ZHANG Dingyuan, LIU Huawei, WANG Juan, et al. Turning fulvic acid into silver loaded carbon nanosheet as a regenerable sorbent for complete Hg⁰ removal in H₂S containing natural gas [J]. Chemical Engineering Journal, 2020, 379(12): 122265 -122274.
- [46] ZHANG Huawei, SUN Huamin, ZHANG Dingyuan, et al. Nano confinement of Ag nanoparticles inside mesoporous channels of MCM-41 molecule sieve as a regenerable and H₂O resistance sorbent for Hg⁰ removal in natural gas[J]. Chemical Engineering Journal, 2019, 361(1):139-147.
- [47] ZHAO Songjian, CHEN Dongyao, XU Haomiao, et al. Combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas[J]. Chemosphere, 2018, 197(1):65-72.
- [48] ZHANG Anchao, LI Chengwei, XING Weibo, et al. Photocatalytic activity and characterization of AgCl/Ag composite for Hg⁰ removal under fluorescent light irradiation [J]. Asia – Pacific Journal of Chemical Engineering, 2018, 13(2): 1 -11.
- [49] SUN Huamin, ZHAO Shulong, MA Yaguang, et al. Effective and regenerable Ag/4A zeolite nanocomposite for Hg⁰ removal from natural gas[J]. Journal of Alloys and Compounds, 2018, 762(1): 520-527.
- [50] ZHAO Songjian, XU Haomiao, MEI Jian, et al. Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range[J]. Fuel, 2017, 200(1): 236-243.

- [51] SHIRKHANLOO Hamid, OSANLOO Mahmood, GHAZAGHI Mehri, et al. Validation of a new and cost-effective method for mercury vapor removal based on silver nanoparticles coating on micro glassy balls[J]. Atmospheric Pollution Research, 2017, 8(2): 359-365.
- [52] ZHAO Songjian, LI Zhen, QU Zan, et al. Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury [J].
 Fuel, 2015, 158: 891-897.
- [53] ZHAO Songjian, MA Yongpeng, QU Zan, et al. The performance of Ag doped V₂O₅-TiO₂ catalyst on the catalytic oxidation of gaseous elemental mercury [J]. Catalysis Science Technology, 2014, 4(11): 4036-4044.
- [54] LIU Yangxian, LIU Ziyang, WANG Yan, et al. Simultaneous absorption of SO₂ and NO from flue gas using ultrasound / Fe^{2+} /heat co-activated persulfate system[J]. Journal of Hazardous Material, 2018, 342(1): 326–334.
- [55] XU Wenqing, TONG Li, QI Hao, et al. Effect of flue gas components on Hg⁰ oxidation over Fe/HZSM-5 catalyst [J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 146-152.
- [56] YANG Zequn, LI Hailong, LIU Xi, et al. Promotional effect of CuO loading on the catalytic activity and SO₂ resistance of MnO_x/TiO₂ catalyst for simultaneous NO reduction and Hg⁰ oxidation[J]. Fuel, 2018, 227(5); 79-88.
- [57] WEN Xiaoyu, LI Caiting, FAN Xiaopeng, et al. Experimental study of gaseous elemental mercury removal with CeO₂/γ -Al₂O₃[J]. Energy & Fuels, 2011, 25(7): 2939-2944.
- [58] ZHANG Anchao, ZHENG Wenwen, SONG Jun, et al. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chemical Engineering Journal, 2014, 236(1): 29-38.
- [59] LI Hailong, WU Changyu, LI Ying, et al. CeO₂-TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400.
- [60] HE Chuan, SHEN Boxiong, CHI Guilong, et al. Elemental mercury removal by CeO₂/TiO₂-PILCs under simulated coalfired flue gas[J]. Chemical Engineering Journal, 2016, 300: 1-8.
- [61] HE Chuan, SHEN Boxiong, LI Fukuan. Effects of flue gas components on removal of elemental mercury over Ce-MnO_x/ Ti-PILCs [J]. Journal of Hazardous Material, 2016, 304 (1): 10-17.
- [62] YANG Shijian, GUO Yongfu, YAN Naiqiang, et al. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: Effect of chemical heterogeneity[J]. Industrial & Engineering Chemistry Research, 2011, 50(16): 9650-9656.
- [63] LI Hailong, WU Changyu, LI Ying, et al. Impact of SO₂ on elemental mercury oxidation over CeO₂ - TiO₂ catalyst [J]. Chemical Engineering Journal, 2013, 219(1): 319-326.
- [64] CAN Fabien, BERLAND Sébastien, ROYER Sébastien, et al. Composition – dependent performance of Ce_x Zr_{1-x} O₂ mixed – oxide–supported WO₃ catalysts for the NO_x storage reduction–

selective catalytic reduction coupled process [J]. ACS Catalysis, 2013, 3(6): 1120-1132.

- [65] TADA Shohei, SHIMIZU Teruyuki, KAMEYAMA Hiromichi, et al. Ni/CeO₂ catalysts with high CO₂ methanation activity and high CH₄ selectivity at low temperatures [J]. International Journal of Hydrogen Energy, 2012, 37(7): 5527-5531.
- [66] 万奇. V/Ce 负载型催化剂脱除燃煤电厂烟气中元素汞的研究[D]. 北京:清华大学, 2011: 77-89.
 WAN Qi, Removal of elemental mercury over V/Ce loaded catalysts in the flue gas of coal fired power plants [D]. Beijing; Tsinghua University, 2011: 77-89.
- [67] LIU Xiangwen, ZHOU Kebin, WANG Lei, et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131(9): 3140-3141.
- [68] GAO Xiang, JIANG Ye, ZHONG Yi, et al. The activity and characterization of CeO₂-TiO₂ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH₃
 [J]. Journal of Hazardous Material, 2010, 174(1-3): 734 -739.
- [69] GAO Xiang, JIANG Ye, FU Yincheng, et al. Preparation and characterization of CeO₂/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ [J]. Catalysis Communications, 2010, 11(5): 465-469.
- [70] WAN Qi, DUAN Lei, HE Kebin, et al. Removal of gaseous elemental mercury over a CeO₂-WO₃/TiO₂ nanocomposite in simulated coal-fired flue gas[J]. Chemical Engineering Journal, 2011, 170(2-3): 512-517.
- [71] WAN Qi, DUAN Lei, LI Junhua, et al. Deactivation performance and mechanism of alkali (earth) metals on V₂O₅-WO₃/ TiO₂ catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas [J]. Catalysis Today, 2011, 175 (1): 189-195.
- [72] LI Hailong, WU Changyu, LI Ying, et al. CeO₂-TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environmental Science & Technology, 2011, 45(17): 7394-7400.
- [73] WANG Yinyin, SHEN Boxiong, HE Chuan, et al. Simultaneous removal of NO and Hg⁰ from flue gas over Mn-Ce/Ti-PILCs[J]. Environmental Science & Technology, 2015, 49 (15): 9355-9363.
- [74] JAMPAIAH Deshetti, TUR Katie M, VENKATASWAMY Perala, et al. Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO₂-MnO_x catalyst [J]. RSC Advances, 2015, 5(38): 30331-30341.
- [75] HE Chuan, SHEN Boxiong, CHI Guilong, et al. Elemental mercury removal by CeO₂/TiO₂-PILCs under simulated coalfired flue gas[J]. Chemical Engineering Journal, 2016, 300 (1): 1-8.
- [76] MICHALOW Mauke Katarzyna A, LU Ye, KOWALSKI Kazimierz, et al. Flame-made WO₃/CeO_x-TiO₂ catalysts for selective catalytic reduction of NO_x by NH₃[J]. ACS Catalysis, 2015, 5(10): 5657-5672.

- [77] YUAN Yuan, ZHANG Junying, LI Hailong, et al. Simultaneous removal of SO₂, NO and mercury using TiO₂-aluminum silicate fiber by photocatalysis [J]. Chemical Engineering Journal, 2012, 192(1): 21–28.
- [78] 李海龙. 新型 SCR 催化剂对汞的催化氧化机制研究[D]. 武汉:华中科技大学, 2011: 53-99.
 LI Hailong. Catalytic oxidation of elemental mercury over novel SCR catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2011: 53-99.
- [79] CHANG Huazhen, WU Qingru, ZHANG Tao, et al. Design strategies for CeO₂-MoO₃ catalysts for DeNO_x and Hg(0) oxidation in the presence of HCl: The significance of the surface acid base properties [J]. Environmental Science & Technology, 2015, 49(20): 12388-12394.
- [80] LIU Jian, GUO Ruitang, GUAN Zhenzhen, et al. Simultaneous removal of NO and Hg⁰ over Nb-Modified MnTiO_x catalyst[J]. International Journal of Hydrogen Energy, 2019, 44(2): 835-843.
- [81] VENNESTRøM Peter R, KATERINOPOULOU Anna, TIRUV-ALAM Ramchandra R, et al. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NO_x with NH₃[J]. ACS Catalysis, 2013, 3(9): 2158-2161.
- [82] CHANG Huazhen, LI Junhua, SU Wenkang, et al. A novel mechanism for poisoning of metal oxide SCR catalysts: Baseacid explanation correlated with redox properties[J]. Chemical Communication, 2014, 50(70): 10031-10034.
- [83] YANG Yang, XU Wenqing, WANG Jian, et al. New insight into simultaneous removal of NO and Hg⁰ on CeO₂ modified V₂O₅/TiO₂ catalyst: A new modification strategy[J]. Fuel, 2019, 249(1): 178-187.
- [84] SENIOR Constance L. Oxidation of mercury across selective catalytic reduction catalysts in coal – fired power plants [J]. Journal of the Air & Waste Management Association, 2006, 56 (1): 23–31.
- [85] KAMATA Hiroyuki, UENO Shun ichiro, NAITO Toshiyuki, et al. Mercury oxidation over the V₂O₅(WO₃)/TiO₂ commercial SCR catalyst [J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8136-8141.
- [86] FENG Chong, WANG Penglu, WANG Fuli, et al. Alkali-resistant catalytic reduction of NO_x via naturally coupling active and poisoning sites[J]. Environmental Science & Technology,

2021, 55(16): 11255-11264.

- [87] CAI Sixiang, XU Tuoyu, WANG Penglu, et al. Self-protected CeO₂ - SnO₂ @ SO₄ -/TiO₂ catalysts with extraordinary resistance to alkali and heavy metals for NO_x reduction [J]. Environmental Science & Technology, 2020, 54(19): 12752 -12760.
- [88] LI Xiang, LI Xiansheng, LI Junhua, et al. High calcium resistance of CeO₂-WO₃ SCR catalysts: Structure investigation and deactivation analysis [J]. Chemical Engineering Journal, 2017, 317(1): 70-79.
- [89] WANG Fumei, LI Guoliang, SHEN Boxiong, et al. Mercury removal over the vanadia – titania catalyst in CO₂ – enriched conditions[J]. Chemical Engineering Journal, 2015, 263(356 –363.
- [90] WANG Fumei, SHEN Boxiong, YANG Jiancheng, et al. Review of mercury formation and capture from CO₂-Enriched oxy -fuel combustion flue gas [J]. Energy & Fuels, 2017, 31 (2): 1053-1064.
- [91] GALLASTEGI Villa M, ARANZABAL A, BOUKHA Z, et al. Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NO_x from waste incinerator flue gas [J]. Catalysis Today, 2015, 254 (1): 2-11.
- [92] FINOCCHIO Elisabetta, RAMIS Gianguido, BUSCA Guido. A study on catalytic combustion of chlorobenzenes [J]. Catalysis Today, 2011, 169(1): 3-9.
- [93] LARRUBIA M Angeles, BUSCA Guido. An FT-IR study of the conversion of 2 - chloropropane, o - dichlorobenzene and dibenzofuran on V₂ O₅ - MoO₃ - TiO₂ SCR - DeNO_x catalysts
 [J]. Applied Catalysis B: Environmental, 2002, 39(4): 343 -352.
- [94] SONG Zijian, PENG Yue, ZHAO Xiaoguang, et al. Roles of Ru on the V₂O₅-WO₃/TiO₂ catalyst for the simultaneous purification of NO_x and chlorobenzene: A dechlorination promoter and a redox Inductor [J]. ACS Catalysis, 2022, 12 (18): 11505-11517.
- [95] SONG Zijian, YU Shixuan, LIU Hao, et al. Carbon/chlorinate deposition on MnO_x - CeO₂ catalyst in chlorobenzene combustion: The effect of SCR flue gas [J]. Chemical Engineering Journal, 2022, 433(1): 133552-133560.