■■

严樟, 旷文杰, 蒋柱武, 等. 双极膜/疏水透气膜-电化学体系高效去除废水中氨氮的研究[J]. 能源环境保护, 2024, 38(1): 93-100.

YAN Zhang, KUANG Wenjie, JIANG Zhuwu, et al. Bipolar membrane/hydrophobic gas permeable membrane electrochemical systems for highly efficient removal of ammonium nitrogen in wastewater[J]. Energy Environmental Protection, 2024, 38(1): 93-100.

双极膜/疏水透气膜-电化学体系高效去除 废水中氨氮的研究

严 樟^{1,2}, 旷文杰², 蒋柱武¹, 冯春华^{2,3,*}

(1. 福建理工大学 生态环境与城市建设学院,福建 福州 350118; 2. 华南理工大学 环境与能源学院, 广东 广州 510006; 3. 工业聚集区污染控制与生态修复教育部重点实验室,广东 广州 510006) 摘要: 氨氮作为地表水和地下水中的主要污染物之一,其形态受水体 pH 影响。针对废水中氨氮 处理过程的 pH 依赖性问题,利用双极膜在电化学反应过程中 H*/OH⁻稳定生成的特性,构建了 双极膜/疏水透气膜-电化学(BPM/GPM-EC)体系。该体系通过电化学分离(回收)和氧化(降 解)两种工艺的结合,实现了高效的氨氮去除效率。当初始氨氮浓度为4000 mg·L⁻¹时,在电流 密度 10 mA·cm⁻²条件下,BPM/GPM-EC 间歇式(以回收为目的)运行 5 h 后,废水中氨氮去除 率达到 99.3%,回收率为 92.3%,比能耗为 18.2 kW·h·kg⁻¹ N。而 BPM/GPM-EC 采用连续式 (氨氮回收/氧化协同进行)运行处理含4000 mg·L⁻¹氨氮的模拟废水,在0.28 mL·min⁻¹流速条 件下,可实现 76.2%的氨氮回收率及废水中氨氮的全部去除,比能耗仅为 14.9 kW·h·kg⁻¹ N。研 究结果表明,BPM/GPM-EC 体系通过集成氨氮的分离与氧化,实现了废水中氨氮的低耗高效处 理,为含氨废水的治理探索出了一条新途径。

关键词: 氦氮; 双极膜; 电化学分离; 电化学氧化 中图分类号: X703 文献标识码: A

文章编号:1006-8759(2024)01-0093-08

Bipolar membrane/hydrophobic gas permeable membrane electrochemical systems for highly efficient removal of ammonium nitrogen in wastewater

YAN Zhang^{1, 2}, KUANG Wenjie², JIANG Zhuwu¹, FENG Chunhua^{2, 3, *}

 College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; 2. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; 3. The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China)

Abstract: Ammonia nitrogen is one of the primary pollutants found in both surface water and groundwater, and its predominant form is heavily influenced by the pH of the aquatic environment. To address the pH dependency in the electrochemical oxidation and separation of ammonia nitrogen, we leveraged the advantages of a bipolar membrane (BPM) that stably generates H^+/OH^- in the electrolytic cell. Consequently, we proposed a bipolar membrane/hydrophobic gas permeable membrane-electrochemical system (BPM/GPM-EC) that demonstrated remarkable performance in removing ammonia nitrogen from wastewater. In a scenario where the initial ammonia nitrogen concentration was 4 000 mg $\cdot L^{-1}$ and

收稿日期:2023-12-01 **DOI**:10.20078/j.eep.20240121

基金项目:广东省基础与应用基础研究基金省市联合基金重点资助项目(2021B1515120077);国家自然科学基金区域创新联合重点资助项目 (U21A2034);福建理工大学-科研启动基金资助项目(GY-Z23204)

作者简介:严 樟(1989—),男,福建福州人,讲师,主要研究方向为水环境污染控制与修复。E-mail: yanzhang@fjut.edu.en

通讯作者:冯春华(1978—),男,湖北黄梅人,教授,主要研究方向为环境污染治理与修复。E-mail: chfeng@ scut.edu.en

the current density was 10 mA \cdot cm⁻², operating the BPM/GPM-EC system intermittently (with a focus on ammonia recovery) for 5 hours achieved an impressive 99.3% removal of ammonia nitrogen from the wastewater. Simultaneously, 92.3% of the ammonia nitrogen was success-fully recovered, with a specific energy consumption of 18.2 kW \cdot h \cdot kg⁻¹ N. In continuous-flow mode, the BPM/GPM-EC system achieved a remarkable ammonia recovery rate of 76.2% and completely removed ammonia nitrogen from the wastewater at a flow rate of 0.28 mL \cdot min⁻¹. Notably, the specific energy consumption for ammonia nitrogen removal was only 14.9 kW \cdot h \cdot kg⁻¹ N. These findings underscore the ability of BPM/GPM-EC system to integrate low energy consumption and high efficiency in treating ammonia nitrogen in wastewater. The combination of recovery and removal presents a novel approach to address challenges associated with ammonia-containing wastewater treatment.

Keywords: Ammonia nitrogen; Bipolar membrane; Electrochemical separation; Electrochemical oxidation

0 引 言

自工业革命以来,由于全球人口和人均粮食 需求持续增长,氮生产和消费不断的增加导致氮 循环规模扩大了一倍。随之带来的氮污染和生态 环境可持续发展之间的矛盾引起了许多国家政策 制定者的广泛重视[1]。氨作为一种含氮化合物是 氮肥与许多合成产品的重要原料^[2]。氨在大规模 生产和使用过程中有相当大一部分流失到外界环 境而造成严重的污染,这也使其成为水环境的主 要污染物之一[3]。水环境中氨氮含量超标可能会 带来各种危害[4-7]:(1) 氨氮可消耗水体中的溶解 氧,滋生兼性和厌氧微生物,导致水体发黑发臭; (2)危害动植物的生长发育,例如当氨含量过高 时,鱼类生物血液携氧能力下降,呼吸系统受损; (3)大量氨氮进入水体导致水体富营养化,造成水 体生态系统失衡;(4)当水中氨氮含量过高时需要 消耗大量的药剂以保证出水水质,增加后续城市 饮用水的处理成本等。在我国,氨氮污染物超标 已成为各地水质达标的瓶颈,因此研究如何有效去 除氨氮污染,对于水污染治理工作有着重要意义。

水体中的氨氮主要以 2 种形态存在:非离子 态氨(NH₃)和电离态铵根离子(NH⁴₄),这 2 种形 态可根据水体 pH 变化而相互转化^[8-9]。随着水 环境中氨氮污染程度日益严重,以及氨氮废水性 质的日趋复杂多变,现有处理技术效果常常不佳, 迫切需要开发更为高效的氨氮去除技术。近年来 电化学水处理技术因其绿色、高效、易控和可持续 等优点在水处理领域备受瞩目^[10-11]。目前应用 于氨氮废水的电化学水处理技术可以分为电化学 氧化和电化学分离回收。这 2 项工艺存在以下问 题:(1)电化学氧化氨氮过程中,H⁺的释放使得 pH 降低导致氧化效率下降,这主要是因为低 pH 条件下,NH⁺与羟基自由基(HO·)或游离氯反应 速率较慢[12-14];(2)电化学分离氨氮过程中往往 需要外源酸完成回收,同时分离后期氨氮浓度减 少导致分离效率降低,能耗升高[15-17]。针对氨氮 氧化的 pH 依赖性问题,之前已有研究成功开发了 双极膜-电氯化体系(Bipolar Membrane-Electrochemical System, BPM-EC),该体系利用双极膜 (Bipolar Membrane, BPM)在直流电场作用下电解 水产生 H⁺/OH⁻特性^[18-19],为阳极提供局部碱度 从而促进 ClO·生成,实现了氨氮的高效氧化降 解^[20]。然而当废水中氨氮浓度过高时,氨氮电氧 化去除过程时间较长会导致电能消耗较大。此时 考虑到高浓度氨氮的回收价值以及去除速率和运 行成本,选择将氨氮分离回收是一种更经济且可 持续的方法。

本研究在 BPM-EC 的基础上,从电化学反应 器构型角度出发,以疏水透气膜/阴极、阴离子交 换膜(AEM)和双极膜作为隔膜,构建双极膜/疏水 透气膜-电化学体系(Bipolar Membrane/Hydrophobic Gas Permeable Membrane Electrochemical System, BPM/GPM-EC)。通过 AEM 和 BPM 的组合 实现酸溶液的原位生成,从而大幅减少外源药剂 的输入,再结合 GPM 的膜剥离功能完成氨的分离 回收。本研究首先探讨阴极室不同初始氨氮浓度 分离去除规律,其次结合阴极室氨氮分离的性能 和阳极室氧化的规律,构建连续式运行模式,通过 合理选择运行参数,集成 BPM/GPM-EC 体系分 离回收与氧化降解 2 项工艺的优势,以实现高浓 度氨氮废水的低耗高效处理。

1 实验部分

1.1 实验试剂

实验所用试剂主要有硫酸铵($(NH_4)_2SO_4$), 硫酸钠(Na_2SO_4),氯化钠(NaCl),氢氧化钠 (NaOH),硫酸(H_2SO_4),盐酸(HCl),酒石酸钾钠 ($NaKC_4H_4O_6$),无水乙醇(C_2H_5OH),以上试剂均 为分析纯。

1.2 反应装置与实验参数

1.2.1 反应装置的构建

BPM/GPM-EC体系为4个有机玻璃制成的 扁平腔室组成(内部尺寸:7.0 cm×7.0 cm× 1.0 cm),通过 BPM、AEM和GPM将4个腔室分 别分隔为阳极室、产酸室、阴极室和回收室,BPM、 AEM和GPM的膜面积均为5 cm×5 cm。4.0 cm× 4.0 cm×0.2 cm二氧化铅(PbO₂/Ti)电极和4.0 cm× 4.0 cm×0.5 mm 钛网(Ti mesh)电极分别作为电解 槽的阳极和阴极。钛网与疏水透气膜贴合成一个 整体,产酸室和回收室相互连通,与阴极室的体积 比为2:1。电化学实验外部施加电流由GPD-3303S直流电源提供。

1.2.2 实验条件和运行参数

BPM/GPM-EC体系在恒电流模式下进行实验,电流大小由直流电源控制,外加电流若无特殊说明固定在10mA·cm⁻²。首先验证 BPM/GPM-EC体系分离回收氨氮的有效性,采用间歇式运行模式。阴极室为含不同初始浓度的氨氮和支持电解质 Na₂SO₄的模拟废水,其他腔室的初始电解液均为支持电解质,其中回收室和产酸室的电解液通过外接蠕动泵以5mL·min⁻¹的速率循环流动构成一个回路。为减少实验过程中氨逸出,阴极室顶部采用导气管与回收室连通。

之后研究 BPM/GPM-EC 体系分离耦合氧化 的性能,采用连续式运行模式。如图 1 所示,废水 通过外接蠕动泵先后流过阴极室和阳极室,模拟 废水除了含不同初始浓度氨氮和支持电解质外还 加入 100 mmol·L⁻¹NaCl,其他运行参数和间歇式 一致。所有电解过程均在室温下进行,样品在指 定的时间间隔用注射器采集,并立即通过 0.45 μm 水系滤膜过滤进行水质测定。所有实验至少重复 3 次,结果以平均值±标准差表示。

1.3 水质检测指标与分析方法

水质检测指标主要是氨氮、亚硝酸盐氮、硝酸 盐氮和溶液 pH 等。氨氮的测定方法依据《中华

图 1 BPM/GPM-EC 反应装置连续式运行模式示意图 Fig. 1 Operation of the BPM/GPM-EC system in continuous-flow mode

人民共和国国家环境保护标准纳氏试剂分光光度 法》(HJ 535—2009),亚硝酸盐氮的测定方法依据 《中华人民共和国国家标准 N-(1-萘基)-乙二胺 分光光度法》(GB 7493—87),硝酸盐氮的测定方 法依据《中华人民共和国环境保护行业标准紫外 分光光度法》(HJ/T 346—2007)。

1.4 效能评估计算方法

1.4.1 阴极室氨氮去除率和去除速率

$$R = \frac{C_0^C - C_t^C}{C_0^C} \times 100\%$$
(1)

式中:R表示总氨氮的去除率(%); C_0^c 和 C_t^c 分别 表示阴极室氨氮在初始和 t 时的浓度(mg・L⁻¹,以 N 计)。

$$R' = \frac{(C_{t_1}^c - C_{t_2}^c) V_c \times 10^{-3}}{t_2 - t_1}$$
(2)

式中: R' 表示 t_1 和 t_2 时氨氮的去除速率(mg·min⁻¹); $C_{t_2}^c$ 和 $C_{t_1}^c$ 分别表示阴极室氨氮在 t_2 和 t_1 时的浓度 (mg·L⁻¹,以N计); V_c 表示阴极室的体积(mL)。 1.4.2 氨氮回收率和逸出率

$$R_{R} = \frac{(C_{t}^{R} - C_{0}^{R}) V_{R} \times 2}{C_{0}^{C} V_{C}} \times 100\%$$
(3)

式中: R_R 表示氨氮的回收率(Recovery Rate,%); C_t^R 和 C_0^R 分别表示回收室氨氮在 t 时和初始的浓 度(mg·L⁻¹,以N计); V_c 和 V_R 分别表示阴极室 和回收室的体积(mL)。回收氨氮的酸溶液在体 积比为1:1的回收室和产酸室循环流动,故回收 室的体积为阴极室的2倍。

$$R_{E} = \frac{(C_{0}^{C} - C_{t}^{C}) V_{C} - (C_{t}^{R} - C_{0}^{R}) V_{R} \times 2}{C_{0}^{C} V_{C}} \times 100\%$$
(4)

式中: R_E 表示总氨氮的逸出率 (Emission Rate,%)。

1.4.3 平均氨通量

$$\bar{J}_{\rm NH_3} = \frac{(C_{\iota}^R - C_0^R) V_R}{A_{\rm CPM} t}$$
(5)

式中: \overline{J}_{NH_3} 表示操作时间内疏水透气膜的平均氨 通量(g・m⁻²・h⁻¹); A_{GPM} 表示 GPM 有效膜面积 (m²),t表示电解时间(h)。

1.4.4 BPM/GPM-EC 体系分离氨氮比能耗

$$SEC' = \frac{I \int_{0}^{t} U dt \times 10^{-3}}{(C_{0}^{c} - C_{t}^{c}) V_{c} \times 10^{-6}}$$
(6)

式中: SEC' 表示双极膜/疏水透气膜-电化学体系 分离去除单位氨氮所需的电能耗(kW・h・kg⁻¹, 以N计); U 为电解过程中电化学装置的电压 (V); I 表示电解过程中施加的电流(A); t 表示电解 时间(h)。

1.4.5 BPM/GPM-EC 体系分离氨氮比能耗

$$FE' = \frac{n \times F \times (C_0^C - C_t^C) \times V}{3\ 600 \times I \times t} \times 100\% \quad (7)$$

式中: FE' 表示双极膜/疏水透气膜-电化学体系 分离氨氮的法拉第效率(%);n 表示每摩尔 NH⁺ 转化为 NH₃所消耗的电子转移数;F 表示法拉第常 数(96 485.3 C·mol⁻¹);V 表示电解液体积(L)。

2 结果与讨论

2.1 BPM/GPM-EC 体系对氨氮的高效分离回收

选择5组含不同初始氨氮浓度(500、1000、2000、3000和4000mg·L⁻¹,以N计)的模拟废水进行氨氮分离回收实验,并且根据不同初始氨氮浓度选择不同运行时间(3、3、3、4和5h)。图2表示了各组模拟废水在BPM/GPM-EC体系中氨氮的分离回收情况,包括阴极室氨氮浓度变化和各组相邻时间间隔内废水中氨氮的去除速率。

如图 2(a) 所示,各组模拟废水在阴极室中氨 氮浓度均单调减少。初始氨氮浓度为 500、1 000 和 2 000 mg · L⁻¹,运行 3 h 结束后,阴极室残余氨 氮浓度分别为 5.2、8.8 和 45.4 mg · L⁻¹;初始氨氮 浓度为 3 000 mg · L⁻¹和 4 000 mg · L⁻¹,运行 4 h 和 5 h 结束后,阴极室残余氨氮浓度分别为 38.1 mg · L⁻¹和 27.8 mg · L⁻¹。以上 5 组废水在 运行结束后氨氮去除率分别为 98.9%、99.1%、 97.7%、98.7%和 99.3%。

与阴极室氨氮浓度减少相对应是回收室氨氮浓度的增加。如图 2(b)所示,回收室溶液中氨氮

浓度变化随着时间推移逐渐趋于平缓,反应结束 后回收溶液中氨氮浓度分别为 238.9、477.6、 938.8、1 391.5 和1 846.2 mg · L⁻¹(回收室体积与 阴极室体积比为 2:1);氨氮回收率分别为 95.6%、 95.5%、93.8%、92.7%和 92.3%,其中初始氨氮浓 度为 500、1000、2 000、3 000 和4 000 mg · L⁻¹的废 水分别在反应前 2、2、2.5、2.5 和4h 就实现了超 过 90%的回收率。根据氨氮质量平衡检查,5 组 模拟废水在体系中存在 3.4%~6.9%的氨氮损失, 这些微小差异可能归因于氨的挥发、渗透引起的 溶液体积变化或者测量误差^[15-16]。

2.2 BPM/GPM-EC 体系对氨氮的分离机制研究

以先前研究的 BPM-EC 体系中氨氮氧化(零 级反应)去除速率 0.35 mg · min⁻¹作为参照^[20],见 图 3(a)中的参照线。5 组不同初始氨氮浓度随时 间的氨氮去除速率变化都遵循先上升再下降的规律,其中初始氨氮浓度为500和1000mg·L⁻¹时,整个运行过程阴极室氨氮分离速率均低于 BPM-EC 氨氮氧化速率(0.35mg·min⁻¹);但当初始氨氮浓度分别上升到2000、3000和4000mg·L⁻¹时,这3组分别在操作过程的前2、3和4h内氨氮去除速率均超过 BPM-EC 氧化氨氮的速率。不过值得注意的是,在反应2、3和4h后,这3组的 氨氮去除速率开始明显下降并低于 BPM-EC 氨氮的氧化速率,此时这3组阴极室残余氨氮浓度

BPM/GPM-EC 中氨氮的分离去除速率取决 于氨氮的回收速率。为了更好解释上述现象并量 化 BPM/GPM-EC 的氨氮分离回收过程,将平均 氨通量作为氨氮回收速率的指标,它表示单位操 作时间内通过有效单位面积疏水透气膜的氨氮质 量。如图 3(b) 所示, 比较 BPM/GPM-EC 处理 5 组不同初始氨氮浓度废水的平均氨通量, 其在操 作期间内同样遵循类似的规律, 即增长到一定值 后开始下降, 且初始氨氮浓度越高对应平均氨通 量越大, 而 5 组初始氨氮浓度不同的废水在回收 过程中平均氨通量分别在 0.5、1、1.5、2 和 3 h 的 时候达到最大, 分别为 5.3、7.7、10.6、12.3 和14.6 g·m⁻²·h⁻¹, 平均氨通量的结果也同样很好地解 释了阴极室氨氮浓度的变化情况。

造成以上现象的主要原因是,在电场作用下 阴极室溶液中的 NH⁺通过电迁移和扩散在阴极/ 溶液界面上积聚,其中 NH₄浓度高于主体溶液,电 解过程阴极析氢产生的 OH⁻导致局部 pH 升高促 使 NH⁺ 去质子化转化为 NH^[21-22]。当主体溶液 初始氨氮浓度越高,同样操作条件下聚集在阴极-微孔膜界面的 NH₄/NH₃越多,膜两侧形成的蒸气 压差也越高,促使更多的 NH,沿膜微孔扩散到膜 的另一侧,在吸收液-微孔膜界面与H⁺结合形成 NH₄,所以平均氨通量与初始氨氮浓度呈正相关。 在操作前期,当废水 pH 还未达到使 NH[‡]完全解离 为NH,的水平时,膜电极两侧NH,浓度梯度随pH 升高而增大,使得 NH,的迁移速率逐渐加快。然 而随着时间推移当pH升至较高水平(pH>10),膜 电极两侧 NH,蒸气压差只取决于界面的氨氮浓 度,但是阴极室氨氮浓度随着反应的进程不断减 少,所以各组平均氨通量后期均出现下降趋势。

为了进一步评估 BPM/GPM-EC 的氨氮分离 去除的性能,计算了 BPM/GPM-EC 的法拉第效 率和能耗。如图 4 所示,BPM/GPM-EC 的法拉第 效率和能耗随初始氨氮浓度增加分别增加和减 少,说明 BPM/GPM-EC 处理高浓度氨氮废水更 有优势。当初始氨氮浓度分别为 500、1 000、 2 000、3 000 和 4 000 mg \cdot L⁻¹时,BPM/GPM-EC 法拉第效率分别为 22.1%、32.4%、46.7%、55.9% 和 61.8%;而当初始氨氮浓度为 2 000、3 000 和 4 000 mg \cdot L⁻¹时能耗分别为 25.4、20.9 和 18.2 kW \cdot h \cdot kg⁻¹ N,低于 BPM-EC 工艺去除氨氮的能 耗 31.4 kW \cdot h \cdot kg⁻¹ N^[20]。

2.3 BPM/GPM-EC 连续流体系应用于废水中高 浓度氨氮的回收与去除

BPM/GPM-EC 对高浓度氨氮废水有优异的 分离回收效果,但该过程分离速率依赖于废水氨 氮浓度。当操作后期阴极室大部分氨氮被分离回 收后,阴极室的分离速率开始显著下降,继续进行

分离操作不再具有经济效益。因此,结合先前研究的 BPM-EC 单元,利用双极膜耦合阳极的氧化体系处理分离后期阴极室剩余的低浓度氨氮,可以缩短处理时间并减少电能的消耗^[20]。通过阴阳极的同步利用进一步提高电流效率,实现废水中高浓度氨氮全过程的高效处理。对此,本研究评估 BPM/GPM-EC 连续式运行模式处理高浓度 氨氮废水的性能。

BPM/GPM-EC 连续式运行模式处理高浓度 氨氮废水过程中,废水先后通过阴极室和阳极室, 即绝大部分氨氮在阴极室完成分离回收,剩余氨 氮在阳极室被氧化降解。当电流密度一定时,阴、 阳极室的水力停留时间成为关键参数。为了最大 限度利用阴、阳极室去除氨氮的能力,即阴极室出 水氨氮恰好在阳极室被全部氧化降解,通过 BPM/ GPM-EC 间歇式分离去除氨氮的动力学以及 BPM-EC 氧化氨氮动力学计算阴阳极室的水力停 留时间。如图 5 所示,显示了浓度为 2 000、3 000 和 4 000 mg · L⁻¹的氨氮模拟废水在 BPM/GPM-EC 阴极室的分离去除效果和 BPM-EC 氧化氨氮 随时间变化曲线。图 5 中 t_1 、 t_2 和 t_3 表示 BPM-EC 该段时间的氨氮氧化量恰好分别等于经过 t_1 、 t_2 和 t_3 后阴极室处理不同初始氨氮浓度废水所剩余的 氨氮含量。因此理论上当氨氮浓度为 2 000、 3 000和 4 000 mg · L⁻¹的 3 组废水在阴、阳极室的 停留时间分别大于 t_1 、 t_2 和 t_3 时,利用阴、阳极室协 同去除能力可以实现废水中氨氮的全部去除。

在 BPM/GPM-EC 连续式运行模式处理模拟 废水实验中,对含 2 000、3 000 和 4 000 mg \cdot L⁻¹氨 氮的模拟废水均设置 3 组不同流速实验。另外, 为了保证阳极氧化氨氮的能力,在模拟废水中还 加入 100 mmol \cdot L⁻¹ Cl⁻。表 1 显示了不同流速下

表 1 BPM/GPM-EC 连续流体系在不同流速下处理不同初始氨氮浓度性能对比

Table 1	Comparison of BPM/GPM-EC performance at different initial ammonia nitrogen concentrations and	ıd						
different flow rates under continuous—flow conditions								

氨氮浓度/	流速/	阴极室出水浓度/	阳极室出水浓度/	去除率/	回收率/			
$(mg \cdot L^{-1})$	$(mL \cdot min^{-1})$	$(mg \cdot L^{-1})$	$(mg \cdot L^{-1})$	%	%			
	0.55	814.6±7.3	197.1±4.5	90.1	56.7			
2 000	0.50	690.2±6.5	14.3±1.9	99.3	62.5			
	0.42	385.7±5.2	0	100.0	77.3			
	0.42	1 132.9±12.5	315.6±6.1	89.5	58.4			
3 000	0.38	924.1±9.6	18.2±2.2	99.4	64.9			
	0.33	636.3±6.8	0	100.0	74.1			
	0.33	1 402.8±15.7	388.4±5.7	90.3	61.8			
4 000	0.30	1 139.5±11.8	28.7±3.3	99.3	68.6			
	0.28	794.2±7.1	0	100.0	76.2			

BPM/GPM-EC 连续流体系处理不同初始氨氮模拟 废水对比,其中流速为0.50、0.38 和0.30 mL · min⁻¹分 别对应阴、阳极室的水力停留时间为 100、132 和 165 min,即图 5 对应的 *t*₁、*t*₂和 *t*₃。

从表 1 看到,当 3 组不同初始氨氮浓度的废 水在阴阳极室的停留时间分别大于 t_1 、 t_2 和 t_3 时, 连续流体系可以实现氨氮的完全去除;当停留时 间分别等于 t_1 、 t_2 和 t_3 时,氨氮去除率可以达到 99.5%、99.4%和 99.4%。综合考虑回收效益和去 除效率,分别选择 0.42、0.33 和 0.28 mL·min⁻¹作 为连续流体系处理 2 000、3 000 和 4 000 mg·L⁻¹ 氨氮模拟废水的流速。在上述流速条件下,废水 中的氨氮在阴极室分别实现 80.7%、78.8% 和 80.1%的去除率,阳极室分别实现 19.3%、21.2%和 19.9%的去除率,另外回收率分别为 77.3%、74.1% 和 76.2%。

2.4 不同 BPM/GPM-EC 运行模式氨氮去除比能耗

如图 6 所示,对比了 BPM/GPM-EC 在间歇式 和连续式 2 种运行模式下的氨氮去除比能耗。当 BPM/GPM-EC 采用连续式运行模式,处理 2 000、 3 000 和 4 000 mg · L⁻¹氨氮模拟废水的比能耗分 别为 19.9、16.6 和 14.9 kW · h · kg⁻¹ N,相比间歇 式分别降低了 21.8%、20.6%和 18.1%。

体系比能耗的影响

Fig. 6 Effects of operating conditions and initial ammonia nitrogen concentration on specific energy consumption in the BPM/GPM-EC system

综上所述, BPM/GPM-EC 连续流体系可以更 好地发挥自身的整体优势, 阴阳极的同步利用提 高氨氮去除速率的同时还降低了能耗, 并且根据 阴极室的氨氮分离去除动力学和阳极室的氨氮氧 化去除动力学可以合理推断阴阳极室的水力停留 时间为实际废水作为参考。

3 结 论

基于双极膜在电化学反应过程中高效水解生 成H*/OH⁻的特性,构建了BPM/GPM-EC体系, 利用双极膜和阴离子交换膜构建的酸室可以迅速 捕集疏水膜侧的NH₃,实现废水中氨氮的选择性 分离回收。根据BPM/GPM-EC阴极室分离效果 和阳极室的氧化能力,设计的连续式运行模式可 以同步利用BPM/GPM-EC体系电化学分离与氧 化氨氮的优势。通过合理推断BPM/GPM-EC体 系连续式运行模式下的水力停留时间,可实现废 中氨氮的高效电化学分离回收和氧化降解,大幅度提 高电流利用效率。研究结果显示,BPM/GPM-EC 连续运行模式与间歇运行模式相比,可以降低约 20%的能耗。

BPM/GPM-EC体系装置结构相对简单,原理 可靠,处理过程可控性强,而且可根据废水组分优 化运行参数。该体系不仅可以高效去除废水中的 氨氮污染物,还可以回收氨资源,实现污染控制和 资源循环利用的双重目标。上述研究充分证明了 BPM/GPM-EC体系处理氨氮废水的巨大应用潜 力,有望推动该技术在实际工业氨氮废水处理中 的大范围应用。

参考文献(References):

- KANTER D R, CHODOS O, NORDLAND O, et al. Gaps and opportunities in nitrogen pollution policies around the world[J]. Nature Sustainability, 2020, 3(11): 956–963.
- [2] LIM J, FERNÁNDEZ C A, LEE S W, et al. Ammonia and nitric acid demands for fertilizer use in 2050 [J]. ACS Energy Letters, 2021, 6(10): 3676-3685.
- [3] 付婉霞, 聂正武, 高杰, 等. 饮用水氨氮的去除方法综述
 [J]. 能源环境保护, 2006(3): 15-17.
 FU Wanxia, NIE Zhengwu, GAO Jie, et al. Summarization on the removal approaches of ammoniacal nitrogen in drinking water
 [J]. Energy Environmental Protection, 2006 (3): 15-17
- [4] MOOK W T, CHAKRABARTI M H, AROUA M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review [J]. Desalination, 2012, 285; 1-13.
- [5] LIN K, ZHU Y, ZHANG Y, et al. Determination of ammonia nitrogen in natural waters: Recent advancesand applications
 [J]. Trends in Environmental Analytical Chemistry, 2019, 24: e00073.
- [6] XIANG S, LIU Y, ZHANG G, et al. New progress of ammonia recovery during ammonia nitrogen removal from various

wastewaters [J]. World Journal of Microbiology and Biotechnology, 2020, 36(10): 144.

- [7] 荆勇.光及电催化氧化去除氨氮的实验与机理研究[D]. 沈阳:东北大学,2018:1-3.
 JING Yong, Experiment and mechanistic study on ammonia-N removing by oxidation of electro-catalysis and photo-catalysis
 [D]. Shenyang: Northeastern University, 2018:1-3.
- [8] 常卫民,王荟,王瑛. 沸石对水中氨氮的吸附性能初探[J]. 能源环境保护,2008(1):39-40.
 CHANG Weimin, WANG Hui, WANG Ying. Preliminary study on the adsorption performance of zeolite for ammonia nitrogen in water [J]. Energy Environmental Protection, 2008(1):39 -40.
- [9] 李依凡,张淏泉,周鹭,等.电化学介导的氨氮回收:原理、现状与展望[J/OL]. 土木与环境工程学报(中英文),2023:1-10[2023-11-01].https://kns.cnki.net/kcms/detail/50.1218.TU.20230421.0934.002.html.

LI Yifan, ZHANG Haoquan, ZHOU Lu, et al. Electrochemically mediated ammonium nitrogen recovery: Principle, progress, and perspective [J/OL]. Journal of Civil and Environmental Engineering, 2023: 1-10[2023-11-01]. https://kns. cnki.net/kcms/detail/50.1218.TU.20230421.0934.002.html.

- [10] RADJENOVIC J, SEDLAK D L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
- [11] CHAPLIN B P. The prospect of electrochemical technologies advancing worldwide water treatment [J]. Accounts of Chemical Research, 2019, 52(3): 596-604.
- [12] ZOLLIG H, FRITZSCHE C, MORGENROTH E, et al. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine [J]. Water Research, 2015, 69: 284-294.
- [13] BONSEN E M, SCHROETER S, JACOBS H, et al. Photocatalytic degradation of ammonia with TiO₂ as photocatalyst in the laboratory and under the use of solar radiation [J]. Chemosphere, 1997, 35(7): 1431-1445.

- [14] SHIBUYA S, SEKINE Y, MIKAMI I. Influence of pH and pH adjustment conditions on photocatalytic oxidation of aqueous ammonia under airflow over Pt-loaded TiO₂[J]. Applied Catalysis A: General, 2015, 496: 73-78.
- [15] LI Y, WANG R, SHI S, et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: Experiments, modeling, and performance analysis [J]. Environmental Science & Technology, 2021, 55(21): 14886-14896.
- [16] WANG X, IM S, JUNG B, et al. Simple and low-cost electroactive membranes for ammonia recovery [J]. Environmental Science & Technology, 2023, 57(25): 9405-9415.
- [17] GUO X, CHEN J, WANG X, et al. Sustainable ammonia recovery from low strength wastewater by the integrated ion exchange and bipolar membrane electrodialysis with membrane contactor system[J]. Separation and Purification Technology, 2023, 305(15): 122429.
- [18] GIESBRECHT P K, FREUND M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials, 2020, 32(19): 8060-8090.
- [19] MAYERHÖFER B, MCLAUGHLIN D, BÖHM T, et al. Bipolar membrane electrode assemblies for water electrolysis [J].
 ACS Applied Energy Materials, 2020, 3(10): 9635–9644.
- [20] KUANG W, YAN Z, CHEN J, et al. A bipolar membrane-integrated electrochlorination process for highly efficient ammonium removal in mature landfill leachate: The importance of ClO[•] generation [J]. Environmental Science & Technology, 2023, 57(47): 18538-18549.
- [21] KIM K Y, MORENO JIMENEZ D A, Efstathiadis H. Electrochemical ammonia recovery from anaerobic centrate using a nickel – functionalized activated carbon membrane electrode [J].Environmental Science & Technology, 2021, 55(11): 7674-7680.
- HOU D, IDDYA A, CHEN X, et al. Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery
 [J]. Environmental Science & Technology, 2018, 52(15): 8930-8938.