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摘要： 为了确保锂离子电池系统的安全性、可靠性和持久性，准确估计电池的健康状态（State of
Health, SOH）至关重要。SOH 作为一个内部状态量，难以通过传感器直接测量，往往需要通过间

接方式进行估计。SOH 估计的准确性在很大程度上依赖于健康特征的提取质量，当前 SOH 估计

研究面临电池内部复杂的电化学衰退机制难以直接观测，且单一特征往往无法全面捕捉电池老化

过程的挑战。首先阐明了 SOH 与电池容量衰减、内阻增长的宏观联系，并追溯其活性物质损失

（LAM）和活性锂损失（LLI）等微观电化学衰减机制，确立了理想健康特征应具备明确物理意义的

评价基准。在此基础上，总结了当前主流的特征提取技术，主要包括基于电压电流曲线、微分曲

线、脉冲功率特性、电化学阻抗和多物理场的特征提取，并对这 5 种特征提取技术进行了归纳与

评述。此外，系统梳理了 NASA、CALCE、Oxford 等多个国际公认的锂电池公开数据集，为相关算

法的开发与验证提供了基准。最后，针对单一特征难以在复杂多变的工况下实现鲁棒性、高精度

SOH 估计的现状，提出未来发展趋势的三个关键方向：（1）建立标准化的评估协议，实现客观的算

法比较；（2）融合多物理场特征（电、热、机械等），创建更全面、更稳健的健康指标；（3）将物理模型

与数据驱动方法相结合（如物理信息神经网络），提高模型可解释性、数据效率和泛化能力。
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Abstract：To ensure the safety, reliability and longevity of battery systems, accurate estimation of the
State of Health (SOH) of lithium-ion batteries is essential. As an internal state variable, SOH is difficult
to  measure  directly  with  sensors  and  is  therefore  often  estimated  through  indirect  methods.  The
accuracy  of  SOH  estimation  largely  depends  on  the  quality  of  the  extracted  health  features  that  are
correlated  with  battery  aging.  This  review  systematically  analyzes  and  evaluates  mainstream  feature
extraction  methodologies  for  lithium-ion  battery  SOH  estimation.  It  clarifies  the  link  between
macroscopic  aging  phenomena  (capacity  fade  and  impedance  rise)  and  microscopic  electrochemical
degradation mechanisms, such as loss of active material (LAM) and loss of lithium inventory (LLI). A
comprehensive  survey  is  conducted  on  five  primary  feature  categories:  (1)  Voltage-current  curve
features, derived from standard charging protocols (e.g., Constant Current-Constant Voltage, CC-CV),
including  temporal  indicators  and  capacity  metrics  within  specific  voltage  windows.  (2)  Differential
curve features, such as Incremental Capacity Analysis (ICA) and Differential Voltage Analysis (DVA),
identifying  electrochemical  phase  transitions  whose  peak  attributes  (height,  position,  area)  serve  as
health  indicators.  (3)  Pulse  power  characterization  features,  obtained  from  Hybrid  Pulse  Power
Characterization  (HPPC)  tests,  reflecting  DC  internal  resistance  (DCR)  and  variations  in  the  open-
circuit voltage (OCV) versus state of charge (SOC) curve. (4) Electrochemical impedance spectroscopy
(EIS) features, extracted from raw impedance data, including parameters fitted using equivalent circuit
models  (ECM)  and  deconvolution  results  from  distribution  of  relaxation  times  (DRT)  analysis.
(5)  Multi-physics  field  features,  which  utilize  non-electrical  signals  from  thermal,  ultrasonic,  and
mechanical  sensors,  providing  additional  diagnostic  dimensions.  Publicly  available  datasets  (e.g.,
NASA,  CALCE,  Oxford)  are  also  reviewed  as  benchmarks.  The  analysis  finds  that  voltage-current
curve features are computationally efficient but typically require full charging cycles. While ICA/DVA
offer  deep mechanistic  insight  by linking peak changes to  LAM and LLI,  their  susceptibility  to  noise
and current rate complicates online implementation. HPPC-derived features effectively track impedance
growth  but  require  accurate  OCV  correction.  EIS  provides  the  most  comprehensive  diagnostic
information,  with  ECM  offering  physically  meaningful  parameters  and  DRT  excelling  at  decoupling
overlapping  processes,  though  measurements  are  time-intensive.  Multi-physics  features  capture
structural and thermal degradation, offering complementary perspectives. A key finding is that no single
feature can reliably provide robust and high-precision SOH estimation under complex and variable real-
world  conditions.  Given  the  limitations  of  single  features,  future  research  is  expected  to  focus  on:
(1)  establishing  standardized  public  benchmarks  and  evaluation  protocols  to  enable  objective
comparison and accelerate technological progress; (2) fusing multi-physics features (electrical, thermal,
mechanical) to develop more comprehensive and robust health indicators; and (3) integrating physical
models  with  data-driven  methods,  such  as  physics-informed  neural  networks  (PINNs),  to  enhance
model interpretability, data efficiency, and generalization.
Keywords： Lithium-ion  battery； Cascade  utilization； State  of  health； Health  features； Feature
extraction

 

0    引　　言

锂离子电池（Lithium-Ion Battery, LIB）因其能

量密度高、循环寿命长和自放电率低等优点，已成

为电动汽车（Electric Vehicle, EV）、电网储能系统

（Energy Storage System, ESS）及便携式电子设备

的首选储能方案[1]。然而，随着使用时长增加和充

放电循环，锂离子电池会经历复杂的电化学老化

过程，导致其性能衰减[2]。为了确保电池系统的安

全性、可靠性和持久性，准确估计电池的健康状态

邵　哲等　锂离子电池健康状态估计的特征提取：方法与应用 ·55·



（SOH）至关重要，这不仅能优化充放电策略、预防

热失控等灾难性故障，还是实现退役动力电池梯

次利用和构建循环经济的关键推动力。通过估计

退役动力电池的 SOH，可以评估其是否适用于储

能等二次生命周期应用，从而最大限度地利用资

源并减少浪费[3]。

SOH作为一个内部状态量，难以通过传感器

直接测量。准确估计 SOH的关键不只在于使用

的模型方法，更深层次地依赖于从电池的各种运

行数据中提取出与电池老化程度强相关的健康特

征（Health Features, HFs）[4]。这些特征是连接可观

测数据与不可观测的内部衰减状态之间的桥梁。

任何 SOH估计模型的性能，尤其是依赖历史数据

的数据驱动模型，其准确性和鲁棒性在很大程度

上取决于所提取健康特征的质量。当前 SOH估

计面临的主要挑战在于难以直接观测电池内部复

杂的电化学衰退机制，且单一特征往往无法全面

捕捉电池老化过程。本文系统综述了多种特征参

数，如充放电曲线、微分曲线、电化学阻抗等在

SOH估计中的应用方法与效果，并特别关注不同

特征参数的局限性，讨论如何提高估计精度和鲁

棒性。同时，介绍了一些可用的公开锂电池数据

集。最后，指出了当前研究中存在的挑战，并对未

来发展趋势提出了展望，为锂电池健康状态估计

及进一步梯次利用的研究提供参考。 

1    锂电池健康状态与衰减机制

锂电池性能的衰减主要体现在 2个方面：容

量衰退和阻抗增长。容量衰减意味着电池存储电

量的能力下降，影响电池的使用时长；阻抗增长会

导致电池在充放电时产生更大的电压降（或电压

升），更多的电量以热量的形式耗散。因此，健康

状态 SOH的定义通常为在一定条件下电池从满

电状态以一定倍率放电到截止电压所放出的容量

与电池额定容量的百分比，是反映电池老化程度

的重要指标。SOH的计算公式见式（1）[5]：

SOH =
C0

CN
（1）

式中：C0 为电池当前容量（A·h），CN 为电池额定容

量（A·h）。另一种计算方式使用内阻的定义，见

式（2）[6]：

SOH =
REoL−Rpresent

REoL−Rnew
（2）

式中：REoL 为电池达到寿命终点时的内阻（Ω），

Rpresent 为电池当前内阻（Ω），Rnew 为新电池的内

阻（Ω）。

在宏观的衰减现象背后是一系列复杂的、相

互关联的物理和化学变化，即微观层面的衰减机

制。电池内部的退化机制极为复杂，可以概括为

正负极中的活性物质损失（Loss of Active Material,
LAM）以及活性锂损失（Loss of Lithium Inventory,
LLI）等，如图 1所示。LLI是指电池中可用于充

放电循环的锂离子数量的不可逆减少，是容量衰

减最主要的因素之一。锂离子是电池的“电荷载

体”，其损失直接导致电池能够储存和释放的电荷

总量下降。除了被固体电解质膜（Solid Electrolyte
Interphase, SEI）生长所消耗外，造成 LLI的另一个

重要原因是析锂以及与电解液发生其他副反应[7]。

LAM是指电极材料本身发生物理或化学变化，使

其失去储存和释放锂离子的能力。导致 LAM的

主要原因包括活性材料颗粒开裂、正极材料结构

在循环过程中发生相变、机械应力或黏结剂失效

导致的活性材料涂层从集流体上剥离等[8−9]。这

些微观层面的变化共同导致了宏观上可观测到的

容量衰减和阻抗增长。因此，理想的健康特征应

能与这些特定的物理化学退化过程建立明确的关

联，从而为 SOH估计提供具有物理意义的输入[10]。
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图 1   锂离子电池衰减机制示意图[11]

Fig. 1    Schematic diagram of the aging mechanism of

lithium-ion batteries[11]

  

2    特征提取方法

SOH作为一个反映电池内部电化学系统综合

状态的宏观指标，难以通过传感器直接测量。它

必须通过分析电池在运行过程中外部可测的物理

量，如电压、电流、温度和时间等数据，进行间接

推断和估计[12]。根据特征的物理量和提取方式，

将特征提取方法分为以下几类。 
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2.1    基于电压电流曲线的特征

电压是一种电池内部反应机制的外部表现形

式，电池的电压电流曲线物理含义丰富，从电池的

充放电曲线中直接提取特征，是最直接、计算成本

最低的特征提取方法之一。恒流恒压充电

（Constant  Current-Constant  Voltage,  CC-CV）模式

是锂电池最常用的充电模式，这一标准化过程为

提取健康特征提供了理想的通用窗口[13]。这些特

征主要基于时间、容量、电压曲线几何形状以及

相关的统计量。 

2.1.1    时间相关特征

CC-CV充电过程包含丰富的电池老化信息。

在 CC阶段，电池先以恒定电流充电，其端电压逐

渐升高至截止电压；随后进入 CV阶段，此过程端

电压恒定，充电电流会逐渐减小直至截止电流。

随着电池的老化，其内阻增加，导致电池在不同充

电阶段达到截止电压和截止电流的时间发生变

化。恒流充电时间（Constant Current Charging Time,
CCCT）指 CC阶段的持续时间，随着电池老化，其

内阻增大，导致端电压更快达到充电截止电压，从

而使得 CCCT显著缩短；等电压增量时间（Time
Interval  for  Equal  Voltage  Increase,  TEVI）则是指

在 CC充电阶段，电池电压从一个固定的低电压

值上升到另一个固定的高电压值所需要的时间，

达到相同电压增量所需的时间会随着容量衰减和

阻抗的增长而减少；与 TEVI相对应的是等电流

衰减时间（Time Interval for Equal Current Decrease,
TECD），即在 CV充电阶段充电电流从一个固定

的高电流值衰减到另一个固定的低电流值所需要

的时间。电池老化会导致 CV阶段的持续时间变

长，因此 TECD会随着 SOH的降低而增加 [14]。

LIN等[15] 的研究证明了 CCCT与电池容量衰减之

间存在强相关性，且避免了微分运算带来的噪声

敏感性问题，是一个简单而有效的健康特征，如

图 2所示。 CAI等 [16] 则分别提取了 CCCT和

CV模式下电流从 1.5 A下降至 0.8 A的 TECD作

为特征，通过皮尔逊相关系数（Pearson Correlation
Coefficient, PCC）和灰色关联分析（Grey Relational
Analysis, GRA）进行相关性分析，证明了这 2个特

征与 SOH具有相对较高的相关性。 

2.1.2    容量相关特征

通过对充电电流进行时间积分，可以得到与

容量相关的特征。这些特征通常与 SOH有更直

接的物理联系。

固定电压区间的充电容量指在 CC充电阶段，

当电池电压从起始电压上升到截止电压时充入的

电荷量。随着电池老化，在相同的电压窗口内能

够充入的容量减少，这直接反映了电池的容量衰

减。在此基础上，可以将 CC充电电压范围划分

为多个小的、固定的电压步长，然后计算在每个

步长内充入的容量增量，形成一个容量增量序列

ΔV-ΔQ。DENG等 [17] 指出随着电池老化，ΔV-ΔQ
的统计特性如平均值和标准差，会发生系统性变

化。即使只使用其中部分随机的充电数据，通过

分析其 ΔQ 序列的统计特征，也能够实现对 SOH
的准确估计，这为 SOH在线应用提供了极大的

便利[18]。 

2.1.3    几何与统计特征

除了时间和容量，电压、电流曲线本身的几何

形状和统计分布也蕴含着电池老化信息。

几何特征包括电压曲线上特定段的斜率、曲

率、拐点位置，以及曲线下方的面积等。例如，CC
阶段电压曲线的斜率会随着内阻的增加而变化。

WU等[19] 的研究提取了充电和放电过程中电压曲

线随时间变化的面积作为健康特征，并使用不同

的数据驱动方法在不同的数据集上验证了该健康

特征，证实了其在表征 SOH变化方面的有效性。

对于一段充放电过程中的电压、电流或温度时间

曲线，可以计算其统计特征，如标准差、偏度、峰

度等表征其 SOH。WANG等[20] 分别从 CC和 CV
阶段的电压电流曲线中，提取了平均值、标准差、

峰度、偏度、曲线熵等共 16个统计量作为物理信

息神经网络的输入参数，拟合电池的退化动力学

函数并预测 SOH。此外，一些信号处理领域的指

标，如波峰因数（Crest Factor）、波形因数（Shape
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图 2    不同衰减阶段的充电电压曲线及 CCCT 特征[15]

Fig. 2    Charging voltage curves and CCCT features at

different aging stages[15]
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Factor）和脉冲因数（Impulse Factor），也被用于量

化曲线形状的变化，并与 SOH建立关联[21]。

基于充放电曲线特征的研究主要局限性在于

许多特征（如完整的 CCCT）依赖于完整的充电周

期，但这在实际的使用场景中难以实现。因此，更

多的研究转向从不完整、随机的部分充放电数据

中提取可靠的健康特征。例如，XIAN等 [22] 研究

发现，尽管 CC阶段包含了丰富的信息，但其起始

状态（即充电开始时的荷电状态（SOC））在实际应

用中是高度随机的，这给基于 CC阶段的特征提

取带来了不确定性。相比之下，多数用户习惯将

电池充至 100% SOC，CV 阶段数据因而被完整记

录，这使基于 CV阶段电流衰减曲线的特征（如

TECD、电流衰减率等）在实际应用中具有天然优势。 

2.2    基于微分曲线的特征

标准的恒流充放电曲线通常包含一些平坦区

域，称为电压平台。这些平台对应于电极材料在

脱锂/嵌锂过程中的相变过程。然而，随着电池老

化，这些平台的变化可能非常微弱。通过对充放

电数据进行微分变换，将隐藏在平滑曲线下的电

化学信息以更清晰、更具物理意义的形式展现。

增量容量分析（Incremental Capacity Analysis, ICA）

和差分电压分析（ Differential  Voltage  Analysis,
DVA）是 2种最常用的微分技术，得到的 IC/DV曲

线上的特征峰能够直接与电极材料的相变过程和

电池内部的特定老化机制相关联，从而为 SOH估

计提供了清晰的机理洞察[23]。 

2.2.1    增量容量曲线

在充放电电压曲线上，通常会出现一些电压

平坦的区域，这些区域对应于电极活性材料在嵌

锂/脱锂过程中的两相共存区，即发生了电化学相

变。ICA通过计算充放电曲线中电量对电压的导

数，以电压 V 为 X轴，增量容量 dQ/dV 为 Y轴得

到 IC曲线 [24]。在 IC曲线上，这些平坦的电压平

台会被转化为清晰可辨的峰，曲线上的每个峰都

对应一个特定的电化学反应过程[25]。IC曲线的计

算公式见式（3）：

∆c =
dQ
dV
=

I ·dt
dV

（3）

∆c式中： 为增量容量（A·h/V），Q 为充 /放电容量

（A·h），V 为电池端电压（V），I 为电流（A），t 为时

间（h）。
随着电池的老化，IC曲线的形态会发生系统

性的变化，这为健康状态的量化提供了丰富的特

征。从 IC曲线中提取的健康特征主要围绕其特

征峰的属性展开，包括峰高（Peak Heigh，即 dQ/dV
的最大值）、峰位（Peak Position，峰值所对应的电

压值）以及峰面积（Peak Area，代表了与该相变过

程相关的容量）。例如，当电极中的活性物质因颗

粒破碎或发生不可逆相变而损失时，能够参与特

定电化学反应的物质总量减少，导致 IC曲线上对

应峰的高度和面积减小[26]。然而 LLI不会减少活

性物质的总量，但会改变正负极之间的荷电状态

平衡，导致电极的可用容量窗口发生“滑动”或

“偏移”。在 IC曲线上，这种偏移表现为特征峰位

置的移动[27]，如图 3（b）所示[28]。 

2.2.2    差分电压曲线

DVA是与 ICA互补的另一种重要技术，其定

义为电压对容量的导数，并绘制 dV/dQ-Q 曲线，

即 DV曲线。DV曲线上的峰值（或谷值）与 IC曲

线的峰值在物理意义上有所不同，DV曲线中的峰

表征的是从一个平衡态向另一个平衡态过渡的转

折点[29]。IC曲线中的峰与 DV曲线中的谷相对

应，其具体计算公式见式（4）：

∆u =
dV
dQ
=

dV
I ·dt

（4）

∆u式中： 为差分电压（V/(A·h)）。
DV曲线上的峰和谷同样可以被提取用作健

康指标，如图 3（c）所示。BERECIBAR等 [30] 构建

DV曲线中峰的位置与 SOH 之间的关系用于估

计 SOH。WANG等 [31−32] 指出 DV曲线中的第二

个拐点会随着电池的衰减向左移动，2个拐点之间

的位置间隔也可用于估计 SOH。同时，对于容量

未达到第二个拐点的电池单体，构建一个函数表

征当前的 DV曲线和原始 DV曲线之间的差异，

该函数也与电池容量之间存在高度相关性，并且

在离线校准后也可用于 SOH估计。

尽管 ICA/DVA在理论上极为强大，但在实际

应用中，尤其是在线 SOH估计中，仍面临着巨大

的挑战。首先，微分处理会放大测量数据中的噪

声，导致计算出的 IC/DV曲线存在校对毛刺，难以

准确识别特征峰。因此，通常需要缓慢、恒定的电

流以及完整的充放电数据才能获得高质量的曲

线，或对原始数据进行复杂的滤波处理，如使用

Savitzky-Golay滤波器，但这又可能导致失真，影

响特征的准确性[33]。此外，IC/DV曲线的形态对

充放电倍率高度敏感，随着倍率的增加，电化学极

化效应增强，会导致特征峰向一定方向偏移，且峰
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形会发生形变甚至重叠，掩盖有用的衰减信息[27]。

目前，新兴的虚拟增量容量（Virtual  Incremental
Capacity, VIC）和虚拟微分电压（Virtual Differential
Voltage, VDV）利用机器学习 [34]，从任意、非恒流

充电模式下收集的部分数据中，重建该电池在理

想的、低倍率恒流条件下的 IC/DV曲线，即使在

真实的、非理想的应用场景中，也能够利用 ICA/
DVA强大的诊断能力，推动了微分技术在 SOH
估计中应用的发展。 

2.3    基于混合脉冲功率特性的特征

电池性能衰减还会引起功率性能的下降，这

通常与电池内部阻抗的增长直接相关。混合脉

冲功率特性（Hybrid  Pulse  Power  Characterization,
HPPC）测试由美国先进电池联合会（USABC）和
FreedomCAR等组织制定，用于评估电池功率性能

和内阻等，表征电池在不同 SOC下的功率能力[35]。

一个 HPPC测试单元括（1）放电脉冲：在电池处于

稳定状态时，施加一个持续时间较短的大电流放

电脉冲；（2）静置：脉冲结束后，让电池静置一段时

间使其电压部分恢复；（3）充电脉冲：施加一个持

续时间较短的充电脉冲。得到测试的电压与电流

响应曲线如图 4所示[36]。该测试单元会在电池的

整个工作 SOC范围内，以固定的 SOC间隔（如每

10% SOC）重复进行，从而绘制出电池在不同 SOC
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下的功率和电阻特性曲线。该方法可以通过建立

放电、静置和充电期间的响应电压与电流的关系，

获得不同 SOC下充放电内阻[37]。 

2.3.1    直流内阻特征

直流内阻（DC  Internal  Resistance,  DCR）是

HPPC测试中提取的核心健康特征，通过计算在电

流脉冲期间电压的变化量与电流变化量的比值得

到，即遵循欧姆定律的 ΔV/ΔI。直流内阻会随着电

池的衰减而增加，因此可以作为健康特征用于估

计 SOH。YANG等 [38] 利用 HPPC测试结果对一

阶电阻电容（Resistor-Capacitor, RC）等效电路进行

参数辨识，得到等效电阻和电容的值，作为神经网

络的输入对 SOH进行估计。然而简单的 DCR计

算方法通常忽略了在脉冲期间由于 SOC变化而

引起的开路电压（Open-Circuit Voltage, OCV）的微

小变化。然而这种变化不可忽略，若不加以校正，

会导致对内阻的估计值过高。因此，PILLAI等[39]

通过模型来补偿 OCV的动态变化，从而得到更准

确的内阻值。 

2.3.2    OCV-SOC 特征

在 HPPC测试中 ，通常可以得到开路电压

OCV与荷电状态 SOC的关系曲线，如图 5所示[40]。

OCV-SOC曲线反映了电极材料在不同锂浓度下

的电势随着电池衰减，OCV-SOC曲线会发生可测

量的平移和形状变化[41]。BARCELLONA等 [42]

的研究采用多项式拟合 OCV-SOC曲线，并将拟

合参数作为健康特征估计，探究这些参数在电池

生命周期中的变化，建立拟合与 SOH之间的映射

关系。GAO等 [43] 则使用 OCV-SOC曲线作为连

接电化学模型和等效电路模型的纽带，将 OCV-
SOC的关系应用至基于等效电路的 SOC估算器，

利用平衡电位量化容量衰减来实现 SOH的估计，

并通过模拟和实验结果验证了所提出的估算方案

的鲁棒性和有效性。LI等 [44] 通过分析 OCV-
SOC曲线的变化，利用库仑计数法和扩展卡尔曼

滤波算法构建 SOH观测器，该观测器能够自适应

地更新 OCV-SOC曲线，可用容量补偿 SOH衰退，

并将这些更新后的信息集成到 SOC估计中，最终

实现对老化电池 SOH的准确估计。 

2.4    基于电化学阻抗的特征

电 化 学 阻 抗 谱（ Electrochemical  Impedance
Spectroscopy, EIS）是一种电化学表征技术，通过

向电化学系统施加微小交流信号并测量系统响

应，深入分析锂电池的内部电化学过程。图 6为

典型的锂离子电池电化学阻抗谱奈奎斯特图。通

过分析不同频率区间的阻抗特征，EIS可以表征容

量衰减、内阻变化、电极/电解质界面劣化等关键

指标，有助于揭示电池内部复杂的电荷传输、界面

反应和材料衰减机制，为电池性能优化和健康状

态预测提供重要的科学依据[45]。
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图 6   典型的锂电池电化学阻抗谱奈奎斯特图[46]

Fig. 6    Typical Nyquist plot of the electrochemical

impedance spectroscopy data for a lithium-ion battery[46]

  

2.4.1    基于原始 EIS 数据的特征

在获取 EIS数据后，最直接的方法是使用

所有频率点的阻抗数据作为健康特征。ZHANG
等[47] 直接将锂电池在 60个频率点下测得的共

120维阻抗值（实部和虚部）数据构建成特征向量，

作为数据驱动模型的输入对 SOH进行估计。然

而有研究指出，对于数据驱动的模型并非输入的

维度越高预测的效果越好；非强相关性的参数在

预测过程中可能起负相关作用，例如冗余的特征

可能影响参数最优化过程[48]，且获取完整频率范
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图 5    磷酸铁锂电池的 OCV-SOC 曲线[40]

Fig. 5    OCV-SOC curve for a LiFePO4 battery[40]
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围内的阻抗数据需要更多的时间。ZHANG等[47]

则在完整阻抗数据的基础上，使用自动相关性

（Automatic Relevance Determination, ARD）找到与

SOH关联性最强的频率作为特征，也取得了较为

优异的估计性能。BAO等 [49] 从 EIS的不同频段

中分别提取了健康特征，将这些特征作为人工神经

网络模型的输入，得到了较高的估计精度。此外，

XIA等[50] 使用SHAP（SHapley Additive exPlanations）
框架分析了 EIS谱中多个频点对 SOH预测的重

要性。研究表明，仅需采集这一小部分优化后的

EIS数据即可准确预测 SOH，测量时间被缩短至

100 s以内，显著减少了测量时间和数据需求。这

些研究简化了 SOH估计过程，使基于有限频谱测

量的快速评估成为可能，并为基于 EIS的 SOH估

计的实际应用提供了新思路。 

2.4.2    基于等效电路模型的特征

将 EIS数 据 与 等 效 电 路 模 型 （ Equivalent-
Circuit Model, ECM）相结合，是提取具有明确物理

意义的健康特征的经典方法。通过将 EIS谱图拟

合到一个由电阻、电容等元件组成的电路模型中，

可以将复杂的阻抗响应分解为几个独立的物理过

程，如图 7所示。常用的等效电路模型有 Rint、
Thevenin、PNGV、RC模型等[51]。
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图 7   基于 ECM 的 EIS 特征提取

Fig. 7    Feature extraction of EIS based on ECM
 

STROE等 [52] 研究了 2.5 A·h的 LiFePO4 电池

在不同循环次数下阻抗的变化规律，并采用等效

电路模型对 EIS进行拟合，分析了等效电阻和等

效电容随循环次数变化的规律，建立了等效电
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阻与循环次数的关系，实现对 SOH的预测。

GALEOTTI等[53] 则研究了不同循环阶段 EIS的变

化规律，同样使用等效电路模型对 EIS进行拟合，

研究各等效参数随健康状态的变化规律，以电池

欧姆电阻与可用容量之间的关系通过证据理论

（Theory of Evidence, TOE）来估计电池的健康状

态。基于 ECM的特征提供了具有清晰物理意义

的参数，能够直接与 SEI膜生长、电荷转移动力学

等微观衰减机制相关联，为深入理解电池的衰减

机制提供了依据。然而这种方法的有效性完全依

赖于所选 ECM的正确性，错误的模型结构或不稳

定的拟合算法都可能导致提取的参数失去物理意

义[54]。相比之下，直接使用原始 EIS数据可避免

复杂的模型拟合问题，特征提取过程更为直接和

鲁棒，但其代价是物理意义的损失[55]。 

2.4.3    基于弛豫时间分布的特征

弛豫时间分布（Distribution of Relaxation Times,
DRT）通过数学变换（如傅里叶变换）将频域的阻

抗谱转换为时域的弛豫时间分布谱图。在 DRT
谱图中，不同的电化学过程会以独立峰的形式出

现，从而实现了对重叠过程的有效解耦。不同的

电化学过程由暂态进入稳态的时间不同，故而可

以通过提取不同的弛豫时间来辨识和分析不同的

电化学过程，用于实现对 EIS谱图的解析[56]。

DRT曲线包含了峰/谷特征和弛豫时间（τ）变
化的全面信息[57]，因此最直接的方法是基于

DRT曲线中的容量衰减来分析峰/谷特征的变化

趋势。ZHANG等 [58] 对从 DRT图和 EIS数据中

提取的参数与 SOH的相关性进行了分析，并从相

关性分析中选择与 SOH呈线性关系或分段线性

关系的参数，实现了高度准确的 SOH估算。SU
等[59] 分析了 DRT曲线分布函数中的峰值和谷值

信息随容量衰减的变化规律，并提取了与 SOH高

度相关的多个特征作为健康特征。对提取的健康

特征进行加权主成分分析处理，以获得间接健康

特征。XU等[60] 则将 DRT和时域数据（如 IC曲线

和内阻）相结合来提取稳定的健康特征。 

2.5    多物理场方法

锂离子电池本质是一个复杂的电−热−力耦合

系统，其衰减过程不仅体现在电学性能上，也伴随

着热动力学和机械结构的变化。利用多物理场传

感器可以捕捉这些非电学信号，为 SOH估计提供

全新的信息维度。

从信息论的角度，锂离子电池的衰减可以被

视为一个从有序走向无序的熵增过程。随着电池

老化，其动态响应信号的熵值会呈现出单调变化

的趋势，可以作为一种新颖的健康特征[61]。利用

样本熵（Sample Entropy）或模糊熵（Fuzzy Entropy）
等算法，可以衡量电池电压或温度等时间序列信

号的复杂性或不规则性。

锂电池在运行中会产热，且其热特性与健康

状态密切相关。JIANG等 [62] 将温度变化率与电

压变化率之比（dT/dV）定义为微分热电压分析

（Differential Thermal Voltammetry, DTV），DTV能

够捕捉电化学相变过程中的熵热效应，DTV曲线

的峰、谷特征可作为健康指标，与 IC峰相对应，提

供了与 ICA互补的热学视角。利用红外热像仪可

以获得电池表面温度的二维分布图。健康的电池

在均匀工作时温度分布相对一致，而老化或存在

内部缺陷的电池则可能出现局部热点。基于此，

KAFADAROVA等 [63] 提出了使用温度分布的统

计特征，如平均温度、最高/最低温度差、温度方差

等，作为反映电池内部不均匀性的健康特征。

超声波传感是一种利用声波探测电池内部物

理结构变化的非侵入式技术。WU等[64] 指出电池

老化过程中发生的物理变化，如电极材料的杨氏

模量变化、电解液密度的改变、内部产气形成气

泡、电极分层或出现裂纹等，都会改变声波的传播

路径和衰减特性，从而导致飞行时间（Time-of-
Flight, ToF）和信号振幅发生可测量的变化，并基

于此特性开发了一种用于监测商业软包锂电池的

超声波传感技术，利用超声波传感数据进行数据

融合分析，构建了新的电池健康指标。此外，通过

在电池表面或内部集成应变片或压力传感器，可

以直接测量在电池衰减过程中析锂、产气导致的

电极体积的膨胀和收缩。从这些传感器信号中

提取的特征也可以作为评估电池健康状态的物理

量度[65]。 

3    公开数据集

高质量的锂电池数据是健康状态估计中获得

高估计精度和泛化性能的重要前提。目前，有多

个重要的公开锂电池数据集可供研究人员使用，

它们涵盖了不同的使用条件和电池类型，为电池

研究提供了宝贵资源。 

3.1    NASA Data
由美国国家航空航天局（National Aeronautics

and Space Administration, NASA）发布的锂电池老
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化数据集[66]，是最早且最广泛使用的公开数据集

之一。数据集中包含多组共 34个标称容量为

2 A·h的 18650型锂电池，在不同温度条件下循环

至初始容量的 70% 或 80% 的完整生命周期退化

数据。该数据集采用恒流−恒压充电和恒流放电

（根据不同电池组采用不同截止电压，2.7、2.5或

2.2 V）的标准化测试协议，涵盖充放电过程中的电

压、电流、温度、容量等关键参数以及电化学阻抗

谱测量结果（频率范围 0.1~5.0 kHz），采用.mat格
式存储。目前该数据集已为 SOH估算、电池剩余

使用寿命预测以及基于机器学习的电池管理系统

算法验证提供了可靠的实验基础[67−68]。 

3.2    CACLE Data
CALCE锂电池数据集 [69] 是由马里兰大学可

靠性工程中心（ Center  for  Advanced  Life  Cycle
Engineering, CALCE）构建的综合性电池老化数据

集。数据集涵盖多种电池形式（圆柱形、软包和方

形）和化学体系（LCO、LFP、NMC）锂离子电池单

体在 4种不同温度（−40、−5、25、50 ℃）和 3种荷

电状态（0、50%、100% SOC）下的测试数据，测试

类型涵盖完整和部分循环、存储、动态驾驶工况、

开路电压测量和阻抗测量等。常用的 CS2系列包

含 15个标称容量为 1.1 A·h的方形钴酸锂电池单

体，所有电池均采用 CCCV充电方式（0.5 C充电

至 4.2 V，截止电流 0.05 A），并根据实验类型采用

不同的放电协议，包括恒流放电（0.5 C、1 C）、变

倍率放电以及不同截止电压的部分充放电循环。

数据内容包含电压、电流、容量、能量、内阻等参

数，并定期进行阻抗测试和容量标定。除 CS2_8
和 CS2_21外，数据采集均采用 Arbin电池测试

仪，以 Excel形式存储，而 CS2_8和 CS2_21使用

CADEX电池测试仪进行数据采集，以 .txt形式

存储[70−71]。 

3.3    Oxford Data
Oxford锂 电 池 数 据 集 （ Oxford  Battery

Degradation Dataset 1） [72] 是由牛津大学 Howey研

究团队构建的电池老化监测数据库，包含 8个小

型锂离子软包电池单体（Kokam SLPB533459H4），
标称容量为 740 mA·h，在 40 ℃ 恒温环境中循环至

电池生命终止。该数据集于 2015年开始记录，采

用 Bio-Logic MPG-205八通道电池测试设备进行

数据采集。实验协议采用恒流−恒压充电模式，

放电则基于城市 Artemis驾驶工况进行；表征测试

在每 100个驱动循环后执行，包括 1 C循环（电流

值 740 mA）和伪开路电压循环（电流值 40 mA）。

数据内容涵盖表征循环过程中的时间、电压、电

荷量和温度等关键参数，以 MATLAB二进制格式

存储，分为示例驱动循环文件和完整特征表征数

据文件 2部分。该数据集因其是在实际驾驶工况

下采集的电池退化特征数据，在电池研究领域具

有重要价值，为电池健康状态诊断、剩余寿命预测

和退化机理研究提供了标准化的实验基础，特别

适用于电动汽车应用场景下的电池管理系统算法

验证。 

3.4    XJTU Data
XJTU锂电池数据集[20] 是由西安交通大学构

建的锂电池全生命周期监测数据库，共包含 55个

标称容量为 2  A·h的 18650圆柱形电池单体

（LiNi0.5Co0.2Mn0.3O2），分为 6个批次，采用 6种不

同的充放电策略进行实验。实验采用 ACTS-
5V10A-GGS-D充放电平台，数据采样频率为 1 Hz，
记录了电池从开始使用到容量衰减至初始值的

80% 以下的完整数据。每个批次的充放电协议均

不同。数据内容涵盖电压、电流、容量、温度等多

维传感器数据，为电池健康状态估算、剩余寿命预

测和退化机理建模研究提供了标准化的基准测试

平台，特别适用于验证机理模型和数据驱动融合

模型方法的有效性。 

3.5    HUST Data
由华中科技大学开发的磷酸铁锂电池数据

库[73] 共包含 77个 18650圆柱形锂离子电池单

体，正极材料为磷酸铁锂，负极材料为石墨，标称

容量为 1.1 A·h。在 30 ℃ 恒温条件下进行实验，

77个电池单体使用相同的快充协议，但采用 77种

不同的多阶段放电协议。该数据集专注于受控变

量下的多电池退化性能分析，特别适用于研究周

期性波动和非稳态演化特性。数据采集采用高精

度电池测试设备，记录了完整的充放电循环过程

中的电压、电流、容量和温度等参数。该数据集

为电池在复杂工况下的性能预测、多样化放电策

略对电池寿命影响的研究以及基于机器学习的电

池健康管理算法开发提供了丰富的实验支撑。 

4    总结与展望
 

4.1    总　结

锂离子电池健康状态估计的准确性高度依赖

于高质量健康特征的提取。本文系统梳理了锂离
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子电池健康状态估计中的特征提取方法及其应用

现状，深入分析了不同特征参数的物理机理、提取

方法和应用效果。通过对基于电压电流曲线、微

分曲线、混合脉冲功率特性和电化学阻抗谱等

4类主要特征提取方法的全面综述，揭示了各类特

征在反映电池老化机制方面的独特优势和固有局

限性。此外，还介绍了 NASA、CALCE和 Oxford
等重要的公开数据集，为电池健康状态估计研究

提供了标准化的实验基础和算法验证平台。这些

数据集涵盖了不同电池类型、工作条件和老化模

式，为 SOH算法开发和性能比较提供了重要支撑。 

4.2    展　望

尽管现有研究已取得显著进展，锂离子电池

健康特征工程仍有广阔发展空间，未来的研究应

集中在以下几个方向。

（1）标准化测试与评估：目前，不同研究中使

用的电池类型、测试工况和评估指标各不相同，这

给不同特征和算法的横向比较带来了困难。因

此，建立公开的、标准化的电池老化数据集和统一

的评估协议，对于推动该领域的健康发展至关重

要。这需要学术界和产业界联合，共同定义能够

反映真实复杂工况的测试规范，保证所提取的特

征和提出的新算法具有实际应用价值。

（2）多特征深度融合：单一的电化学特征往往

难以全面反映电池复杂的老化过程。将来自不同

领域（如电、热、力、声）的特征进行深度融合，是

提高 SOH估计精度和鲁棒性的必然趋势。例如，

电学特征（电压、电流）直接反映宏观电化学反应

动力学，热学特征（表面温度分布）可以揭示内部

阻抗不均匀性和局部老化热点，而声学或力学特

征则能捕捉到电极材料微观结构损伤、产气或析

锂等物理退化信息。通过先进的融合算法（如多

模态深度学习），将这些互补信息有效结合，可以

构建出更全面、更可靠的混合健康指标，克服单一

特征的局限性，从而在面对多重、耦合的锂离子电

池老化机制时实现更精确的健康状态估计。

（3）数据驱动与物理模型耦合：将数据驱动方

法与物理模型相结合是另一个前景广阔的方向。

纯数据驱动模型往往缺乏物理可解释性，且在训

练数据覆盖不到的工况下泛化能力有限。通过将

电池的物理或电化学模型（如伪二维模型、等效电

路模型等）作为约束或先验知识融入神经网络等

数据驱动模型的训练过程中，构建物理信息神经

网络（ Physics-informed  Neural  Networks,  PINN）。

这种方法使得模型的预测结果不仅能精准拟合观

测数据，还能遵守基本的物理定律，不仅能显著提

高模型在小样本数据下的学习效率和泛化能力，

更能增强模型的可解释性与可靠性，使其在电池

管理系统的应用中更值得信赖。
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