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Selective Lithium Recovery from Spent Lithium Iron
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(1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;
2. CCTEG Hangzhou Research Institute, Hangzhou 311201, China)
Abstract: Currently, the electric vehicle industry is expanding rapidly, leading to challenges in the
large-scale retirement and resource recovery of lithium-ion batteries. The black mass from spent
LiFePO, batteries has a complex composition. In this study, an acid-free leaching process based on
sodium persulfate was developed to treat the black mass. This method achieves selective lithium
recovery and enables cathode material regeneration. Key parameters were optimized via single-factor
experiments. At ambient temperature, lithium could be selectively leached from the complex black mass
by adjusting the leaching time to 40 min, the LiFePO,/Na,S,0; molar ratio to 2.0:1.2, and the solid-
liquid ratio to 50 g/L. A lithium leaching efficiency of 86.4% was achieved, while the dissolution of Fe,
Cu, and Al was minimized. Notably, temperatures above 35 “C led to a substantial increase in the
leaching rates of Cu and Al, and temperatures =65 “C promoted the dissolution of Fe. Therefore,

ambient temperature operation saves energy and ensures leaching selectivity. The mechanism was
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investigated using multiple characterization techniques. X-ray diffraction (XRD) revealed that the
majority of LiFePO, was converted into FePO,, following the reaction: 2LiFePO, + Na,S,0; — 2FePO, +
Li,SO, + Na,SO,. Fourier transform infrared spectroscopy (FTIR) showed characteristic peak shifts and
a new peak corresponding to the bending vibration of the PO]™ group. Scanning electron microscopy
(SEM) images demonstrated that the graphite and LiFePO, particle structures were preserved after
leaching, confirming the mildness of the process. Based on the shrinking-core model, the incomplete
lithium leaching was attributed to in-situ retained FePO,, which obstructed the contact between Na,S,0q
and internal LiFePO,. After impurity removal and leachate concentration, lithium was precipitated using
a saturated Na,CO; solution. High-purity Li,CO; was obtained through purification. Regenerated
LiFePO, (RLFP) was prepared via carbothermal reduction using recycled Li,CO; and FePO, as raw
materials, with 20% glucose added as the carbon source, followed by roasting at 700 °C for 10 h under
an N, atmosphere. RLFP exhibited properties comparable to those of commercial LiFePO, (CLFP):
XRD confirmed its standard crystal phase; X-ray photoelectron spectroscopy (XPS) verified that Fe was
in the Fe’" valence state; and Raman spectroscopy showed distinct D and G peaks with an I,//; ratio <
1, indicating a high degree of graphitization. Electrochemical tests demonstrated that RLFP delivered a
specific discharge capacity exceeding 155 mA-h/g at 0.1 C and maintained a capacity retention of
99.2% after 100 charge-discharge cycles at 0.5 C. Our mild, acid-free, and short-flow leaching and
regeneration strategy enables efficient selective lithium recovery from black mass and the regeneration

of high-performance LiFePO,. This work offers a practical pathway for the recycling of spent LiFePO,

batteries and demonstrates promising potential for industrial-scale applications.

Keywords: Spent lithium-ion batteries; Lithium iron phosphate; Acid-free leaching; Lithium

recovery; Short-flow
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Table 1 Element composition of the LFP black mass

JLE Li P Al Fe Cu C

Biiditb/% 197 776 152 1372 055 44.80
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Fig.1 Leaching efficiencies of elements in black mass from lithium iron phosphate under different leaching conditions
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Table 2 Element composition of the leaching residue
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Fig. 8 Electrochemical performance testing of

CLFP and RLFP

3 & it

ARG T — 2% DI ol IR A A e it Sy v
LA P A O A A P R L AR R R A B AR I
oo AMARTT AL B AR | IR AR A AT 4, 8
BT B BE PR B S R A R

Ak gl SR, 1012 IR B 25 L Wi ARk
TR PRGN EE R K 2.0 = 1.2, [EIWEL 50 g/L. K
i I] 40 min (194508, A AR R AR RO
A RN BRI . %R R
(R AR i j2 LiFePO, 78 A LAEH T 1] FePO, Y5 7]
B Ak, BB T DA A A2 R v R TE N TR, T A
AR FE R ZE Y . SEM 43 M i — 2B UE S, 12 #E LA
BT N 2, A ZUBEIR SR LG R S
8

BT TR0 A U T e A LR A
T A B RR AR A R AR RAE LS SRR, A
BEIR BR A RHFE TR SE 1 . JC R M A KR TE ik
BT Y SR AR Y . rfk R R,
A B TR AR A BHEE 0.1 C F IR L B 8
155 mA-h/g, H7 0.5 C FHEH 100 K5 25 R FE
ik 99.2%, RIS M B ALF R EE, A R
T8 R AR R T T

25 L, AT A I B L o Yt ) e R R
5 B 407 e UK RSO A T — S B Tl Ak it
IH AR TR, IR TAEN B T 2 MR ERS
K E— 20 5¢

2% Hfk ( References ) :

[1]  IEA. Global EV Outlook 2025[R]. Paris: IEA, 2025.

[2] WANG Linzhe, QIN Jian, BAI Zhimin, et al. Surface
reconstruction of Ni-rich layered cathodes: In situ doping
versus ex situ doping[J]. Small Structures, 2022, 3(7):
2100233.

[3] VERMA A, KORE R, CORBIN DR, et al. Metal recov-
ery using oxalate chemistry: A technical review[J]. Indus-
trial & Engineering Chemistry Research, 2019, 58(34) :
15381-15393.

[4]  LEI Shuya, SUN Wei, YANG Yue. Comprehensive tech-
nology for recycling and regenerating materials from spent
lithium iron phosphate battery[J]. Environmental Science &
Technology, 2024, 58(8): 3609-3628.

[5] LAI Xin, DENG Cong, TANG Xiaopeng, et al. Soft clus-
tering of retired lithium-ion batteries for the secondary utiliza-
tion using Gaussian mixture model based on electrochemical
impedance spectroscopy[J]. Journal of Cleaner Production,
2022, 339: 130786.

[6] YANG Xiaoguang, LIU Teng, WANG Chaoyang. Ther-
mally modulated lithium iron phosphate batteries for mass-
market electric vehicles[J]. Nature Energy, 2021, 6(2):
176-185.

[7] CHEN Biaobing, LIU Min, CAO Shuang, et al. Regenera-
tion and performance of LiFePO, with Li,CO; and FePO, as
raw materials recovered from spent LiFePO, batteries[J].
Materials Chemistry and Physics, 2022, 279: 125750.

[8] ROSTAMIH, VALIOJ, TYNJALA P, etal. Life cycle of
LiFePO, batteries: Production, recycling, and market
trends[J]. ChemPhysChem, 2024, 25(24): €202400459.

9] BAUM Z J, BIRD R E, YU Xiang, et al. Lithium-ion
battery recycling-overview of techniques and trends[J]. ACS
Energy Letters, 2022, 7(2): 712-719.

[10] ROY JJ, RAROTRA S, KRIKSTOLAITYTE V, et al.
Green recycling methods to treat lithium-ion batteries E-
waste: A circular approach to sustainability[J]. Advanced
Materials, 2022, 34(25): 2103346.


https://doi.org/10.1021/acs.iecr.9b02598
https://doi.org/10.1021/acs.iecr.9b02598
https://doi.org/10.1021/acs.est.3c08585
https://doi.org/10.1021/acs.est.3c08585
https://doi.org/10.1016/j.jclepro.2022.130786
https://doi.org/10.1038/s41560-020-00757-7
https://doi.org/10.1016/j.matchemphys.2022.125750
https://doi.org/10.1021/acsenergylett.1c02602
https://doi.org/10.1021/acsenergylett.1c02602
https://doi.org/10.1002/adma.202103346
https://doi.org/10.1002/adma.202103346

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

LI Xuelei, ZHANG Jin, SONG Dawei, et al. Direct regen-
eration of recycled cathode material mixture from scrapped
LiFePO, batteries[J]. Journal of Power Sources, 2017,
345. 78-84.

QI Cai, WANG Shuhan, ZHU Xukun, et al. Environmen-
tal-friendly low-cost direct regeneration of cathode material
from spent LiFePO,[J]. Journal of Alloys and Compounds,
2022, 924: 166612.

XIAO Haoruo, ZENG Chenrui, FAN Fengxia, et al. A
one-step low-temperature closed-loop eutectic salt strategy for
direct regeneration of severely degraded LiFePO,[J]. Energy
Storage Materials, 2025, 77: 104183.

WANG Zhongheng, XU Hui, LIU Zhiruo, et al. A recrys-
tallization approach to repairing spent LiFePO, black mass[J].
Journal of Materials Chemistry A, 2023, 11( 16) :
9057-9065.

CHEN Wenlan, CHEN Chi, XIAO Hao, et al. Recovery
of Li,CO; from spent LiFePO, by using a novel impurity
elimination process[J]. Molecules, 2023, 28(9): 3902.
BIAN Doucheng, SUN Yonghui, LI Sheng, et al. A novel
process to recycle spent LiFePO, for synthesizing LiFePO,/C
hierarchical microflowers[J]. Electrochimica Acta, 2016,
190: 134-140.

TUNCUK A, STAZIV, AKCIL A, et al. Aqueous metal
recovery techniques from e-scrap: Hydrometallurgy in recy-
cling[J]. Minerals Engineering, 2012, 25(1): 28-37.
CHOI J W, BAE M, LEE H, et al. Improving acid-free
and selective leaching of lithium from end-of-life LiFePO,
batteries using sodium persulfate: Impact of removing
organic matter by thermal treatment in an inert atmosphere[J].
Hydrometallurgy, 2025, 236: 106498.

PENG Dezhao, ZHANG Jiafeng, ZOU lJingtian, et al.
Closed-loop regeneration of LiFePO, from spent lithium-ion
batteries: A "feed three birds with one scone" strategy
toward advanced cathode materials[J]. Journal of Cleaner
Production, 2021, 316: 128098.

GAO Mai, SUN Fangfang, PENG Wenxiu, et al. Green
and efficient method for the realization of full-component
recovery of LiFePO, black powder[J]. Green Chemistry,
2024, 26(12): 7377-7383.

ZHANG Jialiang, HU Juntao, LIU Yubo, et al. Sustain-
able and facile method for the selective recovery of lithium
from cathode scrap of spent LiFePO, batteries[J]. ACS
Sustainable Chemistry & Engineering, 2019, 7( 6) :
5626—5631.

SHENTU Huajian, XIANG Bo, CHENG Yajun, et al. A
fast and efficient method for selective extraction of lithium

from spent lithium iron phosphate battery[J]. Environmental

(23]

(24]

(23]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Technology & Innovation, 2021, 23: 101569.

QU Xin, MA Jianye, ZHANG Beilei, et al. Fast ammo-
nium sulfate salt assisted roasting for selectively recycling
degraded LiFePO, cathode[J]. Journal of Cleaner Produc-
tion, 2024, 435: 140428.

OU lJintao, KANG Siyi, CHEN lJingwei, et al. Study on
the selective recovery of metals from lithium iron phosphate
cathode materials based on hydrothermal oxidation[J]. Jour-
nal of Energy Storage, 2024, 101: 113832.

ZHANG Qiyue, FAN Ersha, LIN Jiao, et al. Acid-free
mechanochemical process to enhance the selective recycling
of spent LiFePO, batteries[J]. Journal of Hazardous Materi-
als, 2023, 443: 130160.

DAI Yang, XU Zhaodong, HUA Dong, et al. Theoretical-
molar Fe'* recovering lithium from spent LiFePO, batteries:
An acid-free, efficient, and selective process[J]. Journal of
Hazardous Materials, 2020, 396: 122707.

PAGNANELLI F, ALTIMARI P, COLASANTI M, et al.
Recycling Li-ion batteries via the re-synthesis route: Improv-
ing the process sustainability by using lithium iron phosphate
(LFP) scraps as reducing agents in the leaching operation[J].
Metals, 2024, 14(11): 1275.

LI Xiaohua, BENSTEAD M, PEETERS N, et al. Recy-
cling of metals from LiFePO, battery cathode material by
using ionic liquid based-aqueous biphasic systems[J]. RSC
Advances, 2024, 14(13): 9262-9272.

LI Xingrui, MA Zihao, GUO Jiangmin, et al. Separation
of Al and Cu from spent LiFePO, cathodes via a combination
of selective leaching and two-stage precipitation[J]. Separa-
tion and Purification Technology, 2025, 368: 132993.
GAO Jianming, WANG Bo, LI Wenjie, et al. High-effi-
ciency leaching of Al and Fe from fly ash for preparation of
polymeric aluminum ferric chloride sulfate coagulant for
wastewater treatment[J]. Separation and Purification Technol-
ogy, 2023, 306: 122545.

LIU Jinlian, YIN Zhoulan, LIU Wei, et al. Treatment of
aluminum and fluoride during hydrochloric acid leaching of
lepidolite[J]. Hydrometallurgy, 2020, 191: 105222.
MENG Qi, ZHANG Yingjie, DONG Peng. A combined
process for cobalt recovering and cathode material regenera-
tion from spent LiCoO, batteries: Process optimization and
kinetics aspects[J]. 2018, 71:
372-380.

LI Li, BIAN Yifan, ZHANG Xiaoxiao, et al. Process for

recycling mixed-cathode materials from spent lithium-ion

Waste Management,

batteries and kinetics of leaching[J]. Waste Management,
2018, 71: 362-371.


https://doi.org/10.1016/j.jpowsour.2017.01.118
https://doi.org/10.1016/j.jallcom.2022.166612
https://doi.org/10.1016/j.ensm.2025.104183
https://doi.org/10.1016/j.ensm.2025.104183
https://doi.org/10.1039/D3TA00655G
https://doi.org/10.3390/molecules28093902
https://doi.org/10.1016/j.electacta.2015.12.114
https://doi.org/10.1016/j.mineng.2011.09.019
https://doi.org/10.1016/j.hydromet.2025.106498
https://doi.org/10.1016/j.jclepro.2021.128098
https://doi.org/10.1016/j.jclepro.2021.128098
https://doi.org/10.1039/D4GC01444H
https://doi.org/10.1021/acssuschemeng.9b00404
https://doi.org/10.1021/acssuschemeng.9b00404
https://doi.org/10.1016/j.eti.2021.101569
https://doi.org/10.1016/j.eti.2021.101569
https://doi.org/10.1016/j.jclepro.2023.140428
https://doi.org/10.1016/j.jclepro.2023.140428
https://doi.org/10.1016/j.jclepro.2023.140428
https://doi.org/10.1016/j.est.2024.113832
https://doi.org/10.1016/j.est.2024.113832
https://doi.org/10.1016/j.jhazmat.2022.130160
https://doi.org/10.1016/j.jhazmat.2022.130160
https://doi.org/10.1016/j.jhazmat.2022.130160
https://doi.org/10.1016/j.jhazmat.2020.122707
https://doi.org/10.1016/j.jhazmat.2020.122707
https://doi.org/10.3390/met14111275
https://doi.org/10.1039/D4RA00655K
https://doi.org/10.1039/D4RA00655K
https://doi.org/10.1016/j.seppur.2025.132993
https://doi.org/10.1016/j.seppur.2025.132993
https://doi.org/10.1016/j.seppur.2022.122545
https://doi.org/10.1016/j.seppur.2022.122545
https://doi.org/10.1016/j.seppur.2022.122545
https://doi.org/10.1016/j.hydromet.2019.105222
https://doi.org/10.1016/j.wasman.2017.10.030
https://doi.org/10.1016/j.wasman.2017.10.028

	0 引　　言
	1 材料与方法
	1.1 材料与试剂
	1.2 实验与方法
	1.2.1 黑粉浸出
	1.2.2 锂的回收
	1.2.3 磷酸铁锂合成
	1.2.4 电池的制作

	1.3 表征与测试方法

	2 结果与讨论
	2.1 浸出过程研究
	2.1.1 浸出条件的影响
	2.1.2 浸出对黑粉颗粒的影响

	2.2 磷酸铁锂正极材料再生研究
	2.2.1 回收碳酸锂的性质
	2.2.2 磷酸铁锂正极材料再生研究


	3 结　　论
	参考文献

