PR NiFe-BDC 16 1bid —mi gk sk 7551k
b = H’JE}F‘?L

R, A %“’*, Xl FEA, Fax, & B, NE#E

1. X G E U F IR mTAEFR, Hb KX 430064;

Mﬁik% TEMAFE ISR, Hdk KX 430074)
HE: Mﬁmﬁﬁi%%mﬁﬂ% A2 Bk B £ Foh) A 2L FAK T PR 2 A2 K AL 3 9 64 52 B
A, ABFF T 2T NiFe-BDC #4734 (400 °C) AT, FI T Bk F Bok (SMX) Mg 212
AAAHEAETFHARAIROELAA LI FWEA AT RLE T, 4R 2R, NiFe-BDC-
400/PMS #& % 7T = FL 99.5% # SMX 2 &, if —#88 25 (PMS) A JA 2k % 14 5| 8.49%, % Z# T
NiFe-BDC/PMS (&R & 26.1%, #| A2 & 3.27%) . MELHFR AR, F R MBR3ET NiO £ 7R E
R AR E, ART *%éﬁs&ihﬁu Ni'' 42 &, BEETEL O, £RO;, TR 1/3 85'0,, ™
Ni'" i@ i 55 PMS a1 %A & R SO, Tk 29 2/3 4410, XA & T S AK—BK P R AL 4 2k
I T'0, 84 £ RALF, A B E 555 PMS 69k B A) B, & A0RAR € 3% 7 3% (HPLC-MS) 47
KA, A SMX efgid A2 9 A R T KA A-SMX 4T A, '0, T F W MR IZFWTIE, HIER
T RI AR, TR R AT FILA B TR AR A AT TN, B 3 RIERE, NI iR 2K E
0.5 mg/L, A4 V £RHHARE, 2L, AFRIE T —Fdd F R MR &L 5 R b T34
Wi, FIAE A WARREFO S AT RFRT LY ERGI R, A SRS B AY
BB  RARAET #0985 ik,
KigiE: AR E,; BT EY;, A5ls; g RARE;, FREEA
FE S ES: X703 XERARIRED: A

Quasi-Pyrolyzed NiFe-BDC for Peroxymonosulfate Activation:

Highly Selective Degradation of Antibiotics
ZHAO Zaiwen', ZHENG Ying"**, MO Wenting', LI Shengui', HUANG
Keliang', YU Peng', HAO Huiru'

(1. College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China;

2. College of Environmental Science & Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China)

Abstract: Radical-dominated advanced oxidation processes often suffer from low selectivity and
inefficient oxidant utilization in water treatment. In this work, the quasi-pyrolysis regulation of NiFe-
BDC at 400 °C successfully transformed the sulfamethoxazole (SMX) degradation pathway during
peroxymonosulfate(PMS) activation from a radical-driven process to a nonradical-dominated one. This
modulation strategy aims to improve PMS utilization and achieve selective oxidation under
environmentally relevant conditions. Specifically, SMX degradation and PMS decomposition were

quantified by high-performance liquid chromatography (HPLC) and UV-vis spectrophotometry. The
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temperature-dependent structural evolution of NiFe-BDC was characterized by SEM, TGA, XRD,
FTIR, and Raman spectroscopy. Electron paramagnetic resonance(EPR) and quenching experiments
were conducted to identify the dominant types of reactive oxygen species, while XPS combined with
correlation analysis elucidated the electronic interactions between oxygen vacancies (Oy) and Ni active
sites. HPLC-MS was employed to determine the degradation intermediates and pathways, while the
environmental stability was evaluated through ion interference, recyclability, and inductively coupled
plasma (ICP)-based leaching tests. The NiFe-BDC-400/PMS process achieved 99.5% SMX removal
with a PMS utilization efficiency of 8.49%, far exceeding that of pristine NiFe-BDC/PMS(SMX
removal: 26.1%, PMS efficiency: 3.27%). Structural characterizations demonstrated that quasi-pyrolysis
at 400 °C partially preserved the carbon framework while exposing abundant Ni and Fe sites, leading to
the in-situ formation of uniformly dispersed NiO/NiFe,O, nanoparticles on the carbon matrix. This
configuration enhanced both the accessibility of active sites and the efficiency of charge transfer.
Mechanistic investigations revealed that both Oy and N" species acted as the key active sites for singlet
oxygen (102) generation. Oy activated O, to produce O;, contributing approximately one-third of the
total 102, whereas inner-sphere complexation between Ni"' and PMS produced SO: intermediates
responsible for the remaining two-thirds. Moreover, Oy, facilitated charge transfer and induced the
Ni"5Ni"" transformation, enriching high-valence Ni"" centers and establishing intrinsic electronic
coupling between the two active sites. This synergistic interaction enhanced '0, formation, which
mediated the selective SMX degradation pathway. LC-MS identified nitro-substituted intermediates as
the main degradation products, typically associated with '0,-dominated pathways. The catalyst
maintained high activity in the presence of common anions and humic acid, with Ni leaching below 0.5
mg/L after three cycles, meeting the Class V water discharge standard. Overall, this study demonstrates
that quasi-pyrolysis effectively regulates active sites and electron-transfer channels in NiFe-BDC,
enabling a stable and selective nonradical oxidation pathway with high PMS utilization efficiency.
Furthermore, the formation of NiFe,O, nanoparticles endowed the catalyst with magnetic properties that
facilitated recovery and reuse. These results highlight the need for further investigation into how Oy
density and electronic coupling quantitatively influence 'O, generation. Future work may explore
controlled defect engineering and heteroatom modulation to optimize the balance between stability and
selectivity. The present findings provide mechanistic insights and a methodological reference for
developing recyclable, Oy-rich catalysts for sustainable pollutant removal and related environmental
redox processes.
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