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Abstract: The co-smelting of waste printed circuit boards (WPCBs) and spent automotive catalysts

(SACs) represents an innovative "waste-to-resource" strategy for recovering resources from hazardous
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wastes. Through metallurgical interactions, the copper in WPCBs acts as an efficient scavenger for
enriching platinum group metals (PGMs), gold, and silver from SACs. Although this technology
provides a sustainable treatment solution for these hazardous wastes through the synergistic recovery of
metals, the transformation mechanisms of organic pollutants during the co-smelting process are not well
understood. This study systematically investigated the transformation behavior of organic pollutants
under optimized metal recovery conditions: a smelting temperature of 1 400 °C, a holding time of 4 h, a
WPCBs-to-SACs ratio of 25%, and a basicity of 1.0. The chemical compositions of SACs and WPCBs
was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR).
Their elemental contents were determined by X-ray fluorescence spectrometry (XRF) and inductively
coupled plasma optical emission spectrometry (ICP-OES). Subsequently, the liquid-phase and gas-
phase products from the co-smelting process were collected to assess secondary pollution risks. Gas
chromatography-mass spectrometry (GC-MS) was employed to identify the compostion of organic
substances. The weight loss characteristics and pyrolysis mechanisms of the materials were further
analyzed. The Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Friedman methods
were used to study the kinetic mechanisms of organic substance decomposition during co-smelting. The
reaction kinetic model equations were applied to fit different conversion rate intervals to explore the
decomposition mechanisms of organic substances. Additionally, an equivalent weighting method was
employed to comprehensively assess the product toxicity, bioaccumulation, persistence, and secondary
pollution risks. Analysis of organic substance composition revealed that the liquid-phase products
mainly consisted of benzene derivatives (35.77%) and phenolic derivatives (37.26%), with no
halogenated pollutants detected. The gas-phase products were primarily composed of small molecules
such as H,, CO, CH,, CO,, and aromatics. Therefore, the co-smelting process resulted in the
dehalogenation and molecular weight reduction of the products, reducing environmental risks. The
metal components in the WPCBs-SACs co-smelting system catalyzed the decomposition of epoxy
resins in WPCBs. The metals inherently present in the co-smelting system (e.g., Cu, Fe, and PGMs)
significantly reduced the activation energy for organic substance decomposition, promoting the efficient
cracking of complex pollutants. Within the temperature range of 600—-800 °C, the activation energy for
organic substance decomposition decreased by 221.64—286.64 kJ/mol. The comprehensive toxicity
assessment identified 4-phenylphenol, bisphenol A, phenol, naphthalene, and p-cresol as the organic
pollutants with the highest environmental risks in the gas and liquid phases. Building on previous
research on the co-smelting recovery of PGMs from WPCBs and SACs, this study comprehensively
elucidated the transformation mechanisms of organic pollutants during the smelting process.

Keywords: Waste printed circuit boards; Spent automotive catalysts; Co-smelting; Metal

recovery; Organic pollutants
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Fig.1 Digital images and XRD patterns of raw WPCBs and SACs
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Fig. 9 Calculated apparent activation energy of organic matter decomposition based on KAS, FWO, and Friedman methods,

and the corresponding activation energy change trend with conversion rate
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Table 4 Correlation coefficients of In(G(a)/ Tz)—I/Tlinear fitting for common solid reaction mechanisms
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Table 5 Comprehensive toxicity assessment of organic pollutants from co-smelting of WPCBs and SACs at 1 400 °C
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