
 

 

机器学习驱动有机固废堆肥过程优化与应用
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摘要： 堆肥技术是实现有机固废（Organic Solid Waste, OSW）资源化与碳中和目标的关键途径，但

传统工艺依赖于经验判断，存在过程调控粗放、周期长、产品质量不稳定及应用针对性弱等瓶

颈。系统综述了机器学习（Machine Learning, ML）技术驱动 OSW 堆肥智能化转型的最新研究进

展。在过程优化层面，ML 通过随机森林、XGBoost、神经网络等算法，能够高精度预测温度、湿

度、碳氮比等关键参数的动态变化，实现基于预测的通风、补水等前馈调控；此外，ML 有助于解析

微生物群落数据以实现功能菌群的定向富集，并融合电子鼻、光谱或图像等多模态信息，实现对腐

熟度的快速、无损智能评估。在产品增值与应用层面，ML 模型推动了堆肥产品的精准定向开发：

用于环境修复时，可预测其对重金属的钝化效率或对有机污染物的降解动力学；用于能源回收时，

可关联热解工艺与生物炭性能；用于农业时，可构建土壤−堆肥智能推荐系统并评估抗生素抗性基

因等环境风险。当前面临的主要挑战包括小样本数据壁垒制约模型泛化、复杂算法在边缘侧实时

部署困难，以及需要通过可解释人工智能（Explainable AI, XAI）增强模型透明度和机理认知。综

上所述，ML 正推动 OSW 堆肥从经验操作向数据智能驱动的新范式转变。未来研究应致力于构

建集成可靠感知、自适应学习与自动决策的智能系统，以优化废物管理中的多目标协同，全面提升

堆肥技术的可持续性与经济效益。
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Abstract：The  global  imperative  for  sustainable  waste  management  has  positioned  composting  as  a
critical  technology  for  converting  organic  solid  waste  (OSW)  into  value-added  resources,  thereby
playing a pivotal role in achieving carbon neutrality. However, the efficacy of conventional composting
is frequently compromised by a reliance on empirical judgment, resulting in suboptimal process control,
prolonged  treatment  durations,  and  inconsistent  product  quality  that  restricts  high-value  applications.
This  review presents  a  comprehensive synthesis  of  the transformative integration of  machine learning
(ML)  across  the  entire  OSW composting  value  chain,  spanning  from initial  process  intensification  to
final  product  valorization.  Within  the  domain  of  process  optimization,  ML  algorithms—including

 
 

收稿日期：2025−08−09　　　　 修回日期：2025−12−24　　　　 接受日期：2025−12−26　　　　 DOI：10.20078/j.eep.20260101
基金项目：国家自然科学基金资助项目（U22A20617）；国家重点研发计划资助项目（2021YFC1910400）
第一作者：宋　慈（2001—），女，四川自贡人，硕士研究生，主要研究方向为机器学习和固体废物资源化。E-mail：songci2409@163.com
*通讯作者：汤　琳（1979—），女，安徽六安人，教授，主要研究方向为固体废物资源化、环境污染物动态传感监测等。

E-mail：tanglin@hnu.edu.cn 

     
     

1

https://doi.org/10.20078/j.eep.20260101
mailto:songci2409@163.com
mailto:tanglin@hnu.edu.cn


ensemble  methods  like  Random  Forest  and  XGBoost,  deep  learning  architectures  such  as  Artificial
Neural  Networks  (ANNs)  and  Convolutional  Neural  Networks  (CNNs),  and  advanced  time-series
models—have demonstrated exceptional capabilities. These models achieve highly accurate predictions
(R2 > 0.85) for dynamic critical parameters, including temperature, moisture content, and C/N ratio, by
effectively  modeling  complex,  non-linear  physicochemical  interactions.  Such  predictive  insight
facilitates  proactive,  automated  control  strategies,  such  as  dynamic  aeration  adjustment,  which
significantly  outperform  reactive,  schedule-based  approaches.  Furthermore,  ML  enables  data-driven
microbial  community  engineering  by  analyzing  metagenomic  data  to  identify  and  promote  key
functional taxa essential for biodegradation. For compost maturity assessment, ML frameworks support
rapid,  non-destructive  evaluation  by  integrating  multi-sensor  fusion  data  from  electronic  noses  and
spectral sensors, or by interpreting visual features via computer vision, thus reducing the dependency on
time-consuming laboratory assays. In the realm of product valorization, ML acts as a powerful enabler
for precision resource recovery, facilitating the design of composts tailored for specific environmental
remediation  tasks,  such  as  predicting  heavy  metal  immobilization  efficiency  or  modeling  the
degradation  kinetics  of  organic  pollutants.  In  sustainable  agriculture,  ML-driven  decision  support
systems  recommend  optimal  compost-soil  blends  based  on  local  edaphic  conditions,  while
simultaneously modeling mitigation pathways for biological risks, including antibiotic resistance genes
(ARGs).  Despite  these  advancements,  widespread  industrial  implementation  faces  barriers,  primarily
the  scarcity  of  high-quality,  annotated  datasets,  which  limits  model  generalizability  and  necessitates
solutions  like  transfer  learning.  Additionally,  deploying  computationally  intensive  models  on  edge-
computing  hardware  presents  challenges  regarding  latency  and  sensor  robustness.  Finally,  enhancing
the  interpretability  of  "black-box"  models  through  Explainable  AI  (XAI)  is  essential  for  fostering
practitioner  trust.  In  conclusion,  ML  is  driving  a  fundamental  paradigm  shift  in  OSW  composting,
evolving  it  from  an  artisanal  practice  into  a  data-intelligent,  precision-engineering  discipline.  Future
progress  depends  on  developing  integrated  cyber-physical  systems  that  combine  robust  sensing  with
adaptive online learning,  promising to optimize the complex trade-offs inherent in waste management
and enhance environmental sustainability at scale.
Keywords： Organic  solid  waste  (OSW)  composting； Machine  learning  (ML)； Parameter
prediction；Intelligent control；Compost products；Data-driven intelligence

 

0    引　　言

根据世界气象组织《温室气体公报》，2023年

全球平均地表二氧化碳浓度达 420.0 mg/L，甲烷浓

度为 1 934 mg/L，氧化亚氮浓度为 336.9 mg/L，较工

业化以前水平分别提高了 151%、265% 和 125%[1]。

联合国政府间气候变化专门委员会（IPCC）在《气

候变化 2023》报告中指出，一个多世纪以来，人类

活动导致全球平均温度升高 1.1℃，极端天气事件

变得更加频繁且强烈，自然生态与人类社会正面

临越来越大的威胁[2]。

固体废物管理是环境治理与生态文明建设

的重要任务。世界银行统计显示，随着人口增长

和中低收入国家人均垃圾产生量的增加，到 2025

年，全球人均垃圾产生量将从 1.20 kg/d增加到

1.42 kg/d，市政固废总量将达到 2.2万亿 kg，其中

OSW占比达 46%。全球固体废物管理成本持续

攀升，2010年为 2 054亿美元，2025年增加至 3 755
亿美元，到 2050年将进一步升至 6 403亿美元，其

中低收入和中低收入国家增长尤为显著[3]。

堆肥作为一种资源化处理手段，可将 OSW转

化为富含有机质（OM）的堆肥产品[4]，改善土壤结

构、增加土壤肥力，促进植物生长，实现 OSW的

高效利用，减少对化肥的依赖，降低因 OSW填埋

或焚烧带来的温室气体排放，对实现碳中和目标

具有重要意义[5−7]。传统堆肥技术是一种重要的

固废处理方式，但其过程依赖操作人员的个人经

验和主观判断，缺乏科学精准的参数调控手段[8]。
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在堆肥过程中，温度、湿度、通气量以及碳氮比

（C/N）等关键参数是影响微生物活性和堆肥速率

的重要因素[9−10]。例如，温度过高或过低会抑制微

生物的生长和代谢，降低堆肥效率[11]；湿度过高则

可能引发厌氧条件，产生恶臭和有害气体[12]；C/N
的不平衡会影响微生物对有机物的分解效果，导

致堆肥产品质量不稳定[13] 等。这些问题使得传统

堆肥过程面临周期延长、养分流失、病原菌未彻

底灭活等挑战[14]，影响堆肥产品的应用价值和市

场竞争力[15]。

在堆肥过程中，抗生素、重金属和有机污染物

的监测及去除/稳定是确保堆肥产品安全性和环

境友好性的关键环节。近年来，新兴技术为该领

域提供了重要支持。例如，光电化学传感器（PECs）
为堆肥中污染物的原位监测开辟了新途径。刘天

豪等[16] 系统分析了 PECs的信号放大和多功能器

件设计策略，为其实际应用提供了理论依据。

ZHU等[17] 开发了一种基于 CuCo@PDA纳米酶的

适配体侧流分析法，实现了黄曲霉毒素 B1 的现场

快速检测。此外，YU等 [18] 利用虾壳制备多孔生

物炭，开发了“降解—传感”一体化原位探针，为抗

生素等有机污染物的实时监测提供了创新方法。

同时，在堆肥污染物去除方面新兴技术也取

得了显著进展。生物电化学系统（BESs）在抗生素

去除领域展现了巨大潜力。TANG等 [19] 从机制

和应用角度全面综述了 BESs的作用。此外，YU
等[20] 研究发现，无金属碳材料在过硫酸盐高级氧

化过程中表现出优异性能，为有机污染物的高效

降解提供了新材料选择。REN等 [21] 则开发了基

于污泥衍生生物炭的催化氢化硝基酚方法，为堆

肥污染物去除提供了新思路。 

1    机器学习在优化堆肥过程中的应用

对机器学习在有机固废堆肥中的应用框架进

行分析（图 1），可以看到机器学习通过数据收集与

预处理、模型训练与选择、模型优化与部署等步

骤精准调控堆肥过程参数，实现提高肥效、缩短堆

肥周期、降低异味及环境影响等核心目标。
 
 

机器学习的通用框架 核心目标
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机器学习在有机蔬菜水肥施用的应用

图 1   机器学习在有机固废堆肥中的应用

Fig. 1    Application of machine learning in organic solid waste composting
 
 

1.1    关键参数预测与动态调控 

1.1.1    温度与湿度预测

温度和湿度是 OSW堆肥过程中的关键参数，

直接影响微生物的活性和代谢过程。ML算法能

够使传感器根据堆肥材料的类型和堆肥阶段自动

调整[22]，确保准确测量不同条件下的温度和湿

度。然而传感器数据在输入模型之前通常需要进

行预处理，包括缺失值填充、异常值检测与处理、

数据标准化/归一化等，以确保数据质量。此外，特

征工程如滑动窗口特征、统计特征（均值、方差等）

的构建，对于提升时序预测模型的性能至关重要。

传感器提供某一点的瞬时测量值，而 ML预

测模型的核心价值在于整合时序数据、多源特征

乃至历史经验，实现对未来趋势的预测、对难以直

接测量状态的估计，以及对复杂非线性关系的挖

掘[8]。例如，ML模型能够基于初期的温升曲线预

测中后期的温度峰值与持续时间，或根据物料特

性与外部环境预判湿度变化，从而实现超前调控，

避免过程失控[23]。因此，ML并非替代传感器，而

是通过高阶数据分析，将离散的测量值转化为对

过程动态的深度认知和决策支持[8]。

DING等[24] 利用 ML模型分析不同阶段的温
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度变化及其与其他参数的相互作用，精确调控温

度，在有效提高堆肥的腐熟度和效率的同时为堆

肥过程的优化提供了具体的指导。MONCKS等[25]

采用的 K近邻算法（IBK算法）能够利用欧几里得

距离预测堆肥样品的湿度含量，利用 ML算法，如

基于实例的 IBK算法和多层感知机（MLP），对传

感器数据进行处理和分析，提高了 OSW堆肥湿度

测量的精度，特别是 IBK算法，其预测结果与通过

实验室烘干法得到的参考值之间的相关系数高达

0.993 9。HUANG等 [8] 在城市污泥的热辅助生物

干化过程中，利用 ML构建预测模型精准预测水

分比和堆肥温度的变化，期间 ML帮助分析了干

燥时间、通风量、初始水分含量等因素对堆肥湿

度和温度的影响，从而优化堆肥条件。此外该团

队还指出高斯过程回归（GPR）模型在预测水分比

和堆肥温度方面表现出色，决定系数（R2）分别达

到了 0.996  7和 0.995  8，此外，他们还通过使用

ML技术助力开发了图形用户界面软件（GUI），便
于预测堆肥过程中的关键参数，有效减少实验成

本和时间，为城市污泥的资源化利用提供了技术

支持。

基于门控循环单元（GRU）的时序模型能够有

效处理时间序列数据，GRU相比长短期记忆网络

（Long Short-Term Memory, LSTM）具有更简单的

网络结构（参数更少、训练更快），在处理堆肥过程

中具有中短期依赖关系的传感器时序数据时表现

优异。Transformer模型是一种基于自注意力机制

的神经网络架构，虽然在某些长序列任务中表现

更好，但其计算复杂度较高，在资源受限的实时堆

肥监测中实用性较低。将 GRU模型应用到代谢

动力学可预测堆肥过程中的 NH3 排放，通过分析

历史数据和实时监测数据，准确预测温湿度变化

趋势，为及时调整堆肥工艺参数提供依据，确保堆

肥过程在适宜的温湿度条件下进行，提高堆肥效

率和质量。在实际应用中，该模型可根据堆肥初

期的升温速率和湿度变化，提前预警可能出现的

温度过高或湿度过低问题，以便操作人员及时采

取措施，如调整通风量或添加水分，防止堆肥过程

失控。 

1.1.2    C/N 优化

C/N会直接影响 OSW堆肥过程中微生物的

代谢以及产品中的营养成分[26−27]。随机森林

（Random Forest，RF）和人工神经网络（ANN）等

ML算法可分析碳氮代谢路径的敏感性。在处理

堆肥研究的表格数据时，RF凭借其强大的非线性

拟合能力、内置的特征重要性评估以及良好的抗

过拟合特性而被广泛采用[28]；ANN则擅长捕捉深

层次的特征交互，在数据量充足时能获得更高精

度[23]；极限梯度提升（XGBoost）等梯度提升算法

（GB）通常在结构化数据的预测精度竞赛中表现

最佳[29]。通过对大量堆肥实验数据的学习和分

析，建立 C/N与堆肥效率之间的关系模型，实现

对 C/N的精准调控。DEHGHAN等[30] 使用ML技

术预测城市有机垃圾中的 C/N，该团队通过构建

预测模型，特别是使用 Extra Trees模型，实现了

对 17个城市有机垃圾 C/N的精确预测。研究表

明，ML模型能够有效地捕捉和预测 C/N与灰分

含量等数据中的复杂关系，其中 Extra Trees模型

在训练阶段的 R2 达到了 1.0，在测试阶段达的

R2 达到了 0.97，并且均方误差（MSE）极小。同时

通过特征贡献度分析（SHAP分析）揭示了灰分含

量（Ash content）在预测 C/N过程中的重要作用。

这项研究展示了如何利用可解释性人工智能

（XAI）从“黑箱”模型中提取可靠的物理化学洞

察，将数据驱动结果与领域知识联系起来。ML的

应用为城市有机垃圾管理提供了宝贵的视角，帮

助政策制定者和废物管理专业人员实施更高效、

更可持续的有机废物管理方法。SHI等[31] 通过结

合人工神经网络（BPNN）和遗传算法（GA）优化灵

芝渣的好氧堆肥工艺参数，以提高腐殖酸（Humic
Acid，HA）含量。BPNN模型基于正交实验数据构

建，能够准确预测堆肥过程中 HA的含量，而 GA
则用于进一步优化堆肥参数组合，确定了最优的

C/N、含水量、是否使用细菌剂以及堆肥时间。结

果表明这种经 ML优化后的堆肥不仅提升了 HA
的含量，还比传统的正交实验范围分析更为有

效。MUTHUVENI等[32] 利用ML技术（特别是ANN）

模拟和优化蚯蚓堆肥过程，以实现对 C/N、二氧化

碳释放率（Carbon Dioxide Evolution Rate, CER）和
发芽指数（GI）等关键参数的预测建模，该团队通

过使用反向传播算法，设计的 ANN模型能够基于

实验数据预测不同底物组合下的堆肥过程指标。

研究结果表明，ANN模型在预测 C/N、CER和

GI方面具有高 R2（>0.99）和低 MSE（<0.5），显示出

良好的统计显著性和准确性。研究结果表明，

ML的应用为理解堆肥过程中 C/N的变化及其与

其他参数的关系提供了有力工具，有助于优化堆

肥过程，提高堆肥产品的质量和稳定性。总的来
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说，采用 RF与 ANN模型进行 C/N优化，可使堆

肥效率显著提升，R2 高达 0.9以上，有效解决了传

统堆肥过程中因 C/N不合理导致的问题，提高了

OSW的分解效率和堆肥产品的质量稳定性。 

1.1.3    通风策略优化

氧气供应对好氧堆肥中微生物的代谢活动至

关重要。通过利用 ML可根据堆肥过程中氧气浓

度、温度等参数的实时反馈，可动态调整通风策

略，优化氧气供应。以 Bacillus subtilis M07为例[33]，

该嗜热菌在充足的氧气条件下可加速发酵过程，

通过强化学习调控通风量和通风频率，使 Bacillus
subtilis M07活性得到充分发挥，提高堆肥效率和

腐殖质产量，同时降低能耗和环境污染风险。

DING等[34] 开发的 CGA-BP神经网络模型能精确

预测曝气量，提高微生物活性，促进有机物分解，

加速堆肥成熟过程。 

1.2    微生物群落智能调控——功能菌定向富集

微生物群落是堆肥过程的核心驱动力，不同

微生物在堆肥不同阶段发挥着关键作用。卷积神

经网络（CNN）等深度学习算法可处理宏基因组数

据，识别堆肥中的关键菌群，CNN特别适用于处

理具有局部相关性和空间层次结构的数据，如基

因序列数据或衍生的光谱特征矩阵，能够自动提

取有鉴别性的微生物特征模式[35−36]。LIU等[37] 发

现放线菌可促进木质素降解。借助 CNN对宏基

因组数据的分析[8]，能精确定位放线菌在堆肥中的

分布和动态变化。据此采取定向富集措施，例如

添加特定菌株培养基或优化堆肥环境条件，可提

高木质素等难降解有机物的分解效率，加速堆肥

进程。 

1.3    腐熟度智能评估 

1.3.1    多模态数据融合

堆肥腐熟度是衡量堆肥产品是否成熟的标

志，传统检测方法通常需要复杂的化学分析和较

长的检测周期[38]。电子鼻可获取堆肥的挥发性

有机物信息，并通过支持向量机（Support Vector
Machine，SVM）等 ML模型将该类信息与其他相

关参数（如温度、pH等）进行融合，建立腐熟度预

测模型。在数据融合前，通常需要对来自不同源

的数据进行预处理，包括去除传感器噪声、处理缺

失值、数据标准化以消除量纲影响，以及通过特征

选择方法（如递归特征消除）筛选最具判别力的特

征子集。采用电子鼻数据联合 SVM预测 GI，其
R2 可达 0.93，实现对堆肥腐熟度的快速、准确评

估，为堆肥产品的及时应用提供保障 [39]。WAN
等[40] 通过 ML技术预测和优化厨余垃圾堆肥过程

中的 C/N以及腐熟度，研究者通过构建预测模型，

ML算法（如 RF、XGBoost、LightGBM和 MLP）能
够精准预测堆肥的种子 GI和 C/N，结果表明

XGBoost在多任务预测中表现最佳，融合模型在

预测GI和C/N时R2 最高，分别达到了0.977和0.986。
HE等[41] 通过 ML技术构建智能预测模型以评估

厨余垃圾堆肥的腐熟度，他们基于快速检测过程

指标（RDPMs），引入电子供体能力（EDC）和电子

受体能力（EAC）作为关键驱动因子，采用多种

ML算法 （如 ET、XGBoost、 LightGBM、 kNN和

GDR）分别构建 RDPMs模型和融合模型，并利用

SHAP方法进行模型可解释性分析。结果表明，

RDPMs模型在验证集上表现优异，R2 达到 0.986 1，
优于融合模型的 0.977 4，说明仅依靠快速检测指

标即可实现高精度 GI预测，为堆肥过程的实时监

控与智能化管理提供了可行方案。

NH+4 NO−3

ML模型不仅能够预测堆肥腐熟度指标，还能

通过特征重要性分析识别影响堆肥腐熟度的关键

因素及其相互作用。LI等 [42] 采用了 4种 ML模

型（ Extra  Trees、 Gradient  Boosting、 Multi-Layer
Perceptron和 K-Nearest Neighbour）预测绿色废物

堆肥的 2个腐熟度指标——种子 GI和 T 值（堆肥

结束时与堆肥初始阶段的 C/N比值）。其中，Extra
Trees算法实现了最高的预测准确率，GI的 R2 为

0.928，T 值的 R2 为 0.957。同时通过皮尔逊相关

矩阵和 SHAP分析，研究揭示了堆肥过程中关键

参数与腐熟度之间的相互作用。分析发现，堆

肥时间是影响堆肥腐熟度的最重要因素，此外，

HA对 GI有显著影响，而堆肥过程中的 C/N对

T 值的影响较强。该研究体现了 ML算法在预测

绿色废物堆肥腐熟度方面的潜力，并为堆肥过程

的优化提供了新的方法和视角。WANG等 [43] 研

究了 ML在有机废物堆肥腐熟度预测中的应用，

发现利用 RF和 ANN模型并基于堆肥时间、温

度、pH、电导率、铵氮（ -N）和硝态氮（ -N）

浓度等关键参数预测 GI，其中 RF和 ANN的 R2

均大于 0.9，表明二者在预测 GI方面表现优越。

SHAP分析结果表明，堆肥时间、温度和 pH是影

响 GI的重要特征，其中堆肥时间对 GI的影响最

为显著。偏依赖图（PDP）显示，GI随着堆肥时间

的延长而增加，约 30天后趋于稳定；温度低于

40°C时对 GI影响较小，但超过 40°C时 GI会迅
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速下降；高 pH有利于 GI的提高，而电导率过高则

对 GI有负面影响。 

1.3.2    图像识别技术

ML可以利用计算机视觉（CV）的概念和技术

来提高其功效[44]。堆肥的表观特征（如颜色、质地

等）在一定程度上反映了其腐熟度。在堆肥腐熟

度评估中，CV采用 CNN及其变体等技术从堆肥

图像中提取特征[45]。CNN在图像处理中具有优

势，因其能够通过卷积层自动学习图像中的空间

层次特征，例如颜色、纹理等，从而避免人工设计

特征的繁琐，并且对图像的平移、旋转等变化具有

一定的不变性[46]。该模型以堆肥照片为输入，先

提取其形态、颜色等物理特征，再与温度、含水率

等关键指标进行深度学习映射，最终实时评估堆

肥腐熟度。这种方法显著降低了腐熟度评估的复

杂性。随着数据量的增加，这种方法可以扩展到

评估其他类型的堆肥或其他评价指标，从而提高

其通用性和适应性。与传统方法相比，图像识别

技术具有操作简便、快速直观等优点。堆肥生产

现场实时监测腐熟度，可以通过及时调整堆肥工

艺参数，提高生产效率和产品质量控制水平。薛伟

等[47] 通利用 CNN分析不同堆肥阶段的图像，实

现了对堆肥腐熟度的快速评估，该研究收集了 3
种不同堆肥材料的图像，构建了包含近 30 000张

图像的 4个数据集，并使用 CNN（特别是 ResNet
模型）进行训练和测试，该方法在 4个测试集

上的准确率分别达到了 99.7%、99.4%、99.7% 和

99.5%。CNN模型能够提取图像的多级特征，从

而有效区分堆肥的腐熟度。此外，该研究还探讨

了模型在不同遮挡、分辨率和光照条件下的鲁棒

性。结果表明，模型对小面积遮挡和轻微分辨率

变化具有一定的耐受性，但对大面积遮挡和显著

分辨率变化较为敏感。总的来说，这项工作证明

了基于 CNN的图像识别技术在堆肥腐熟度预测

中的有效性和实用性。SANGEETHA等 [48] 开发

了 Faster R-CNN评估农业 OSW堆肥腐熟度的方

法：通过分析不同堆肥阶段的图像 ， Faster  R-
CNN能够提取堆肥的颜色和纹理等多级图像特

征，从而快速判断堆肥的腐熟程度，该方法不仅提

高了堆肥腐熟度预测的准确性，还大大缩短了预

测时间，平均预测时间不到 1秒，准确率高达

96.4%。这一技术为 OSW堆肥的高效管理和应用

提供了有力支持。 

2    ML 驱动的 OSW 堆肥产品多场景应用

以“composting”和“machine learning”为关键

词在 Web of Science核心合集中检索 2007—2025
年间的所有文献，再采用 VOSviewer软件进行可

视化聚类分析（图 2），可以看到 ML通过构建复杂

的数据模型，不仅有助于 OSW堆肥过程顺利进

行，还能对堆肥化产品的多样化应用场景进行拓

展，表 1汇总了各场景中典型模型的性能表现。
 

环境影响与评估

建
模
与
预
测

模型与算法

管
理
与
优
化

图 2    机器学习辅助堆肥与有机固废管理研究的关键词共现聚类分析可视化知识图谱

Fig. 2    The results of cluster analysis of keywords in publications on composting and organic waste management with

machine learning support
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ML不仅在预测精度上表现出色，而且通过 SHAP、
LIME等 XAI揭示的特征重要性，更是将数据驱

动的结果与堆肥过程的物理化学以及生物机理

（如 OM对重金属的络合、关键菌群的功能）紧密

联系起来，增强了结论的科学深度与可信度。

 
 
 

表 1    有机废物堆肥中 ML 模型应用场景分类

Table 1    Classification of application scenarios of ML model in organic waste composting
 

应用场景 研究对象 方法与主要应用 参考文献

预测

工业堆肥水分动态监测 IBk（预测湿度，R2 = 0.993 9） [25]

城市有机废物C/N XGBoost（预测C/N比，R2 = 0.89） [30]

好氧堆肥曝气需氧量
协同遗传算法−反向传播神经网络（Cooperative Genetic Algorithm-Backpropagation，

CGA-BP神经网络）（预测需氧量，MAE为4.2%）
[34]

餐厨垃圾堆肥腐熟度
轻量级梯度提升机（Light Gradient Boosting Machine, LightGBM）（分类评估腐熟

度，准确率95.2%）
[40]

园林垃圾腐熟度 XGBoost（预测腐熟度指标，R2 = 0.91） [42]

有机废物堆肥关键参数 LightGBM（预测堆肥关键参数，RMSE为4.3） [43]

农业废物堆肥图像腐熟度 移动端神经网络（MobileNet）（基于图像分类评估腐熟度，准确率93%） [47]

堆肥腐熟度图像识别
快速区域卷积神经网络（Faster Region-based Convolutional Neural Network, Faster R-

CNN）（图像识别腐熟度，准确率96.4%，预测时间<1 s）
[48]

堆肥中Cu/Zn生物有效性
梯度提升决策树（Gradient Boosting Decision Tree, GBDT）（预测重金属生物有效

性，R2 = 0.89）
[49]

猪粪堆肥抗生素抗性基因动态 XGBoost（预测抗性基因丰度变化，F1-score > 0.88） [50]

堆肥N2O排放量
模型无关元学习框架（Model-Agnostic Meta-Learning, MAML）（预测排放量，

RMSE降低18%）
[51]

优化

厨余堆肥参数（温度、湿度、C/N） RF（优化工艺参数组合，R2 = 0.87） [24]

灵芝渣堆肥工艺参数
人工神经网络−遗传算法（Artificial Neural Network-Genetic Algorithm, ANN-GA）（优

化参数以提升腐殖酸含量，效率提升12.7%）
[31]

蚯蚓堆肥生产条件
I-最优混料设计（I-optimal Mixture Design） + 人工神经网络（ANN）（建模与优化生

产条件，R2 = 0.92）
[32]

石油C/N污染土壤修复条件
自动化机器学习（Automated Machine Learning, AutoML）（优化生物修复条件，效率

提升25%）
[52]

分析

堆肥与抗生素抗性基因关系
斯皮尔曼秩相关（Spearman Rank Correlation） + 多元方差分析（PERMANOVA）（分

析相关性及统计显著性）
[26]

猪粪堆肥微生物群落动态
线性判别分析效应大小（Linear Discriminant Analysis Effect Size, LEfSe） + 曼特尔检

验（Mantel Test）（识别差异物种并分析环境因子关联）
[37]

堆肥腐熟度指标评估
主成分分析（Principal Component Analysis, PCA） + 聚类分析（Cluster Analysis）（探

索数据结构与分组）
[38]

电子鼻腐熟度分类
k-近邻分类器（k-Nearest Neighbor, k-NN）（基于PCA和LDA降维后的特征分类，准

确率>90%）
[39]

腐熟度指标适用性 层次分析法（Analytic Hierarchy Process, AHP）（评估与排序各指标的相对重要性） [45]

堆肥修复重金属污染机制
欧共体标准局连续提取法（BCR Sequential Extraction Procedure） + 扫描电子显微镜−

能谱分析（SEM-EDS）（分析重金属形态与微观分布机制）
[53]

　　注：“预测”与“优化”类场景主要展示模型的预测或优化性能（如R2、准确率等）；“分析”类场景主要展示所采用的统计、计算或实验方法及

其分析目的。由于各研究的数据集、任务目标和评估指标存在差异，所列结果主要用于展示其在各自特定场景下的应用方式与潜力，不宜进行

简单的横向绝对比较。
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2.1    污染环境修复 

2.1.1    重金属钝化

在污染土壤修复领域，堆肥产品具有吸附和

稳定重金属离子的作用[54]。BAI等[49] 利用 RF模

型预测堆肥中 Cu、Zn等重金属的生物有效形态，

通过分析堆肥的 OM、总磷（TP）等成分与重金属

形态之间的关系，确定关键调控因子。研究证实，

OM和 TP是影响 Cu、Zn生物有效性的关键因

素，通过优化堆肥配方和工艺，提高 OM和 TP含

量，可有效钝化土壤中的重金属，降低其生物毒

性，为污染土壤的生态修复提供了科学依据和技

术支持。

MADZIN等[55] 运用 ML模型，包括自适应神

经模糊推理系统（ANFIS）和多重线性回归（MLR）
来预测废蘑菇堆肥生物炭（SMC生物炭）对废弃矿

井水中重金属的吸附性能。通过实验室规模的金

属截留柱实验获取数据，利用 ANFIS模型预测不

同初始金属浓度和 pH条件下 SMC生物炭的吸附

容量，并与 MLR模型对比。结果表明，ANFIS模

型表现更优，其 R2 更接近 1，RMSE和 MAE更接

近 0，能更准确地预测重金属的吸附容量，为废弃

矿井水中重金属的去除提供了可持续解决方案。

韩林沛等[53] 通过室内钝化培养试验，研究了

餐厨垃圾高温预处理堆肥（HC）与无机钝化剂

（HLZ）配施对镉（Cd）和铅（Pb）污染土壤的修复效

果。结果表明，HC与 HLZ组对土壤 Cd和 Pb的

钝化效果最佳，钝化率分别为 76.92% 和 86.29%，

且残渣态较对照组分别增加了 10.65% 和 19.94%。

傅里叶变换红外光谱结果显示，高温预处理能促

进好氧堆肥过程 OM降解并提高腐殖化程度，产

生更多羧酸类和羟基类物质络合 Cd和 Pb，进而

降低其生物有效性和迁移性。同时，HLZ组的土

壤 pH和电导率显著提高，具有最高的有效氮磷钾

养分含量和酶活性，且磷酸酶活性与 Cd和 Pb钝

化率呈正相关。 

2.1.2    土壤修复案例

堆肥生物修复通过高温[56] 和微生物活性 [57]

促进石油烃（PH）降解。WANG等[52] 将 ML应用

于预测和优化石油烃污染土壤生物修复条件中，

利用 ML分析 8个变量（包括土壤理化性质中的

有机碳、有机氮、磷酸盐，石油特性中的石油烃类

型、浓度，修复参数中的修复技术、含水量、培养

周期）对修复效率的影响。研究发现堆肥生物修

复是高效修复 PH污染的土壤的方法之一，另外该

团队通过部分依赖图（PDP）进一步揭示了关键变

量与修复效率之间的关系，利用 H2O自动化 ML
（AutoML）成功预测了最优修复条件（PH浓度低

于 5 000 mg/kg且培养周期在 20~40天)，这为修

复 PH污染土壤提供了有力的技术支持。

MALULEKA等[58] 通过 ML预测和分析堆肥

修复柴油污染土壤的效果，研究使用了多种

ML模型，包括不同类型的 LR和 ANN模型，来分

析土壤 pH、光照强度、柴油浓度、椰糠堆肥浓度

和营养物质添加量等因素对土壤持水率（WRC）的
影响。研究发现，双层 ANN模型在预测生物修复

效率时表现最佳，其 R2 为 0.999 0，RMSE为 0.182 1，
优于正常 LR模型的 R2 0.971 3和 RMSE 0.968 0，
这表明 ANN模型在处理复杂和大量数据时具有

更好的预测能力，能够有效支持堆肥修复柴油污

染土壤的规划和决策。 

2.2    能源化利用—热解炭性能预测

堆肥产物的热解炭具有良好的吸附性能，可

用于环境修复和能源存储等领域。梯度增强回归

模型（GBR）可根据热解工艺参数（如温度、时间

等）预测热解炭的孔隙率、吸附容量等性能指标。

通过建立热解炭性能预测模型，可精准调控热解

工艺，制备具有特定性能的热解炭产品，满足不

同应用场景的需求，提高 OSW能源化利用的附

加值。

SINGH等 [59] 首次运用 ML模型模拟堆肥生

成速率与气候参数和 OSW在印度城市固体废物

占比的函数关系，研究了 ML模型，包括多层感知

器（MLP）、K-近邻（KNN）、RF、GB，以及自回归

积分滑动平均（ARIMA）模型在不同气候条件下堆

肥生产建模中的应用，通过考虑气象参数（如温

度、相对湿度、降水、风速）和有机废物含量来预

测堆肥产量，并对不同 ML算法进行比较。结果

表明，GB模型在预测中表现最佳，具有最高的

R2（ 0.99） 和 最 低 的 RMSE（ 0.757） ； 而 ARIMA-
MLP模型在 10年期预测中表现最佳，标准误差

为 21.115 2，预测的堆肥产量为 74 958 kg。这些

模型为开发区域特定的堆肥预测和预测模型提供

了可行性，有助于实现可持续的全球未来。

LYTRAS等 [60] 开发了 5种 ML模型（线性回

归、决策树 （Decision  Tree,  DT）、KNN、SVM和

XGBoost），用于预测岛屿社区食物垃圾堆肥生成

的堆肥量以及最终筛分后的堆肥量等。这些模型

以环境温度、混合物料量和混合物料组作为输入，
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预测堆肥过程的产量，结果表明这些模型在预测

堆肥食物垃圾的结果方面非常有效，能够用于优

化堆肥厂的设计和运行。其中，XGBoost回归和

K-近邻回归器表现最佳，达到了最低的 MSE和

MAE。例如，在测试集中，XGBoost回归的MSE为

247.448，MAE为 9.512；K-近邻回归器的 MSE为

190.643，MAE为 8.508。相比之下，SVR的表现较

差，其 MSE和 MAE分别为 5 321.702和 58.830。
此外，通过五折交叉验证评估模型的稳健性，K-近
邻回归器表现出最小的标准偏差，是最稳健的模

型。这些模型的预测结果与实际结果非常接近，

表明它们在预测堆肥过程的关键指标方面具有较

高的准确性。 

2.3    农业循环应用 

2.3.1    区域性土壤适配

不同地区的土壤类型和性质差异较大，堆肥

产品在农业应用中需要与当地土壤相适配[61]。

ML模型可构建土壤−堆肥匹配推荐系统，通过对

不同地区土壤和堆肥样本数据的学习和分析，为

堆肥产品的合理施用提供指导。

MENG等[62] 运用 ML模型（RF和自适应增强

算法 (Adaptive Boosting, AB)）预测玉米产量，结合

多源数据（卫星数据、气候数据、土壤数据和肥料

数据）提高预测准确性。研究使用了有机番茄−玉
米轮作（OMT）系统，该系统采用堆肥和冬季覆盖

作物（WCC）作为肥料。通过 ML模型（尤其是

RF和自适应增强 AB模型），发现堆肥的使用对

玉米产量有显著影响。文献通过分析不同肥料系

统（包括传统矿物质肥料、有机番茄−玉米轮作中

的堆肥等）下的玉米产量，发现堆肥系统的产量趋

势与堆肥的应用量一致。预测结果表明，包含堆

肥数据的模型（如 VCSF组合：植被指数、气候数

据、土壤数据和肥料数据）能更准确地预测玉米产

量，其中 RF和 AB模型在 VCSF数据组合下的

R2 达到 0.85到 0.98，RMSE低于 0.01 kg/m2，优于

其他数据组合。这表明堆肥相关数据对提高玉米

产量预测的准确性具有重要作用。

MUSANASE等 [63] 开发了一个基于 ML和物

联网的作物和肥料推荐系统（CFRS），旨在优化卢

旺达的农业实践，系统包含 2个预测模型：作物推

荐系统（CRS）和肥料推荐系统（FRS）。CRS基于

神经网络模型，使用主要作物及其关键生长参数

（如氮、磷、钾水平和土壤 pH）的数据集进行训

练，测试准确率达到 97%，精确率为 99.18%，召回

率为 98.66%，F1分数为 98.98%，并且在与其他模

型（如 SVM、DT和 XGBoost）的比较中表现最

佳。FRS采用基于规则的方法，根据土壤 pH和作

物营养需求（氮、磷、钾）提供个性化的肥料推荐，

帮助减少肥料浪费并削弱环境影响。实验结果证

明了 CFRS系统在作物推荐和肥料优化方面具有

高效性和实用性。

FOLORUNSO等 [64] 开发了一款利用 ANN来

预测土壤养分和优化肥料使用的应用程序

（GeaGrow），它通过预测土壤属性（如氮磷钾含量

（NPK）、有机碳、土壤质地组成和 pH水平）为种

植户提供量身定制的肥料建议，旨在提高尼日利

亚西南部的农业生产力，其中 ANN模型在预测土

壤质地分类时达到了 99.958 5% 的高准确率，而在

预测土壤 pH时准确率为 99.72%，MAE为 0.278 5。
系统通过结合土壤质地及其保水性、NPK和有机

碳含量来预测土壤的 pH水平，并据此优化肥料

施用。

MARZI等 [65] 提出了基于 ML的卫星检测方

法，使用支持向量分类（SVC）等模型，结合多源卫

星数据（如 Sentinel-1、Sentinel-2和 Landsat-8），通
过分析光谱指数的变化来检测堆肥施用。西班牙

数据集中，SVC模型的训练准确率达到 90%，测试

准确率为 88%；意大利数据集中，训练准确率为

70%，测试准确率为 69%。引入热数据后，模型准

确率在西班牙提升了 2%，在意大利提升了 12%。

这表明热数据显著提高了模型性能，有助于更准

确地检测堆肥施用情况。该方法有助于实现农业

活动的大规模监测，以确保符合相关环保法规的

要求并提高食品产品的可追溯性。 

2.3.2    微生物风险控制

堆肥产品中可能含有抗生素抗性基因（ARGs）
等微生物风险因子，对生态环境和人体健康构成

潜在威胁。XGBoost模型可预测 ARGs的消减路

径，通过分析堆肥过程中的温度、微生物群落等

参数与 ARGs变化的关系，确定关键控制点。YU
等[50] 通过 ML模型（XGBoost和 RF）研究了猪粪

好氧堆肥过程中 ARGs的整体变化，涉及的抗生

素包括四环素类（如四环素、土霉素）、磺胺类（如

磺胺甲恶唑）、大环内酯类（如红霉素）、β-内酰胺

类（如青霉素）和氨基糖苷类（如庆大霉素），基于

191组数据，XGBoost模型的 R2（0.651）高于 RF
（0.490），表明其预测性能更优。通过 SHAP分析，

揭示了影响 ARGs变化的关键因素依次为高温
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期、总堆肥期、堆肥持续时间和高温期平均温

度。尽管模型因数据量有限而存在提升空间，但

该研究不仅为堆肥过程中 ARGs的预测提供了新

方法，还为优化堆肥参数以降低堆肥产品在农业

种植应用中的 ARGs传播风险提供了科学依据。

CIPULLO等[66] 采用 ANN与 RF，预测堆肥修

复土壤中污染物的生物有效性及其对微生物活动

（如土壤呼吸、微生物群落结构）和更广泛生态受

体（种子发芽、蚯蚓毒性）的毒性影响，以支持基于

微生物的风险控制。ANN模型在预测污染物生

物有效性方面表现良好（R2 可达 0.97），而 RF模型

在预测微生物活性（如土壤呼吸，R2=0.77）等毒性

终点时表现可靠，并能有效识别关键驱动因子（如

砷的生物有效性）。该研究为利用机器学习评

估堆肥修复过程中的微生物生态风险提供了有效

工具。

这些研究展示了如何利用 XAI技术 （如

SHAP分析）从黑箱模型中提取关于堆肥过程相

关参数变化的关键洞察，不仅增强了模型的可信

度，而且将数据驱动结果与堆肥过程的物理化学

与生物机理联系起来，为优化堆肥工艺参数以降

低 ARGs传播风险提供了科学依据。

ML深度赋能堆肥技术及堆肥化产品应用，形

成三大核心方向（图 3）：污染修复、能源化利用与

农业循环应用。在污染修复领域，机器学习模型

（如 RF、AutoML）精准预测并优化堆肥中重金属

钝化效果，提升土壤修复效率；能源化利用方面，

模型（如 GBR、ARIMA-MLP）预测热解炭性能及

堆肥生产速率，助力资源高效转化；农业循环应用

里，模型（如 XGBoost、ANN）实现土壤适配与微

生物风险控制，推动可持续农业发展。整体而言，

ML通过数据驱动的精准预测与优化，全方位提升

堆肥技术效能，拓展堆肥化产品价值，为环境保护

与资源利用开辟新路径。 

3    挑战与未来方向
 

3.1    数据壁垒

在ML应用于 OSW堆肥化领域，数据是关键

基础。然而，目前存在数据壁垒问题[67]，尤其是在

小样本条件下。针对该挑战，以下几种技术路径

具有重要的应用价值：

（1）迁移学习：可利用在大型通用数据集上预

训练的模型作为特征提取器，通过微调适配到小

样本堆肥任务[68]。在堆肥图像识别中，使用在

ImageNet上预训练的 ResNet模型，通过迁移学习

快速适配到堆肥腐熟度评估任务；在时序预测中，

将在其他工业过程数据上训练的模型迁移到堆肥

参数预测。

（2）元学习：采用模型无关元学习框架，通过

在多组堆肥实验数据上训练，使模型获得快速适

应新堆肥任务的能力[69]。具体而言，将不同原料

组合、不同环境条件下的堆肥过程视为不同任务，

MAML框架通过多任务学习获得对新堆肥任务的

快速适应能力，仅需少量样本即可达到较好性能。

（3）数据增强：对于堆肥图像数据，可采用旋

转、裁剪、色彩变换等数据增强技术[70]；对于传感

器数据，可通过添加噪声、时间序列扭曲等方法扩

充数据集[71]。

BAI等 [49] 在重金属形态预测方面的研究中，

仅有的 260组数据限制了模型的准确性和泛化能

力。为解决该问题，元学习与迁移学习的应用受

到关注，其可在小样本数据集上进行有效的模型

训练和知识迁移，提高模型的性能和适应性[51, 72]。

元学习通过多任务学习挖掘不同任务的共性特

征，实现知识共享，同时自适应地优化学习策略，

使模型在新任务中快速利用已有知识进行学习，

减少对大量数据的依赖，从而打破数据壁垒。迁

移学习则通过将源域的知识迁移到目标域，借助

预训练模型在大规模数据上学习到的通用特征表

示，再通过逐步微调策略，使模型在少量新数据上

快速适应新任务，降低对新任务大量数据的需求，

以此突破数据壁垒。

然而，需警惕上述技术路径可能带来的风

险。例如，若源域与目标域数据分布差异过大，迁
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图 3    机器学习驱使堆肥技术及堆肥化产品应用

Fig. 3    Machine learning drives composting technology

and compost product applications
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移学习可能导致负迁移，反而降低模型性能[68]；数

据增强若引入不符合物理或化学机理的噪声，会

造成数据污染[70]；元学习在小样本任务上容易过

拟合，导致在真实场景中准确率失真[69]。因此，在

应用这些先进方法时，必须辅以严谨的数据质量

评估、领域相似性验证，并尽可能引入物理或化学

机理作为模型约束，以平衡数据驱动方法的灵活

性与科学性[67]。 

3.2    模型部署与边缘计算的挑战

当前研究多集中于模型开发阶段，但 ML模

型的真正价值体现在实际部署应用中。将复杂模

型部署到堆肥场的实时控制和监测系统面临多重

挑战：

（1）计算效率是核心问题。复杂的深度神经

网络在资源受限的嵌入式设备或边缘节点上可能

存在推理延迟高、能耗大的问题，影响实时控制效

果[73]。解决方案包括模型轻量化技术，如知识蒸

馏、模型剪枝和量化，在保持性能的同时大幅减少

计算资源需求[74]。

（2）数据鲁棒性至关重要。实际堆肥环境中，

传感器数据可能存在延迟、缺失、噪声干扰等问

题，要求模型具备良好的容错能力和抗干扰性。

需开发专门的数据修复算法和鲁棒性训练策略[75]。

（3）模型的自适应更新能力也是实际应用的

关键。堆肥过程受季节、原料变化等因素影响，模

型需要能够在线学习以适应条件变化，同时避免

灾难性遗忘。联邦学习等分布式学习框架为多堆

肥场协同模型优化提供了可行路径[76]。 

3.3    XAI 的系统化应用

XAI不仅是提升模型透明度的工具，更是连

接数据驱动预测与堆肥机理认知的桥梁[77]。在堆

肥研究中，XAI的系统化应用应贯穿以下层面：

在特征工程层面，SHAP[78]、LIME[79] 等技术

可识别影响堆肥过程的关键参数，指导传感器部

署和监测重点。例如，通过 SHAP分析发现堆肥

时间是影响腐熟度的最重要因素，这与传统堆肥

理论一致，验证了模型的物理合理性。

在机理揭示层面，XAI能够发现传统方法难

以察觉的复杂相互作用。如通过部分依赖图分析

温度与 pH对腐熟度的协同效应，或通过特征交

互分析揭示不同微生物群落之间的功能耦合关

系[77−78]。

在工艺优化层面，基于 XAI的敏感性分析可

为堆肥参数调控提供量化指导，将黑箱模型的预

测转化为具体的操作建议，如精确的通风策略或

配料比例调整[78]。 

4    结　　论

ML技术推动了 OSW管理从传统的经验驱

动向智能驱动的范式转变。在堆肥过程优化方

面，ML可精准预测并指导调控关键参数，智能调

控微生物群落，快速准确评估腐熟度，显著提高了

堆肥效率和产品质量。在堆肥产品的多场景应用

中，ML驱动的模型为污染环境修复、能源化利用

和农业循环应用提供了有力支持，充分发挥了堆

肥产品的环境和资源价值。尽管当前仍面临数据

壁垒、模型在边缘设备部署困难等挑战，但随着研

究的深入和技术的进步，这些问题有望通过算法

优化与系统集成得到解决。另外，未来研究应高

度重视模型的泛化能力和鲁棒性评估。建议通过

跨数据集验证、使用不同来源和条件的堆肥数据

进行测试，以及模拟输入数据扰动等系统性方法，

全面评估模型在实际应用中的稳定性。只有具备

良好泛化能力和鲁棒性的模型，才能真正在复杂

的实际堆肥环境中可靠运行，这是机器学习从理

论研究走向工程应用的关键环节。未来，研究应

致力于构建融合实时感知、多模态学习与自适应

决策的智能堆肥系统，以应对 OSW处理中复杂的

多目标协同挑战，为实现可持续的资源化利用提

供更有效的解决方案。
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