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Advances in Machine Learning-Driven Optimization and Applications
in the Organic Solid Waste Composting Process
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(1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;
2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University),
Ministry of Education, Changsha 410082, China )

Abstract: The global imperative for sustainable waste management has positioned composting as a
critical technology for converting organic solid waste (OSW) into value-added resources, thereby
playing a pivotal role in achieving carbon neutrality. However, the efficacy of conventional composting
is frequently compromised by a reliance on empirical judgment, resulting in suboptimal process control,
prolonged treatment durations, and inconsistent product quality that restricts high-value applications.
This review presents a comprehensive synthesis of the transformative integration of machine learning
(ML) across the entire OSW composting value chain, spanning from initial process intensification to

final product valorization. Within the domain of process optimization, ML algorithms—including
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ensemble methods like Random Forest and XGBoost, deep learning architectures such as Artificial
Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), and advanced time-series
models—have demonstrated exceptional capabilities. These models achieve highly accurate predictions
(R2 > (.85) for dynamic critical parameters, including temperature, moisture content, and C/N ratio, by
effectively modeling complex, non-linear physicochemical interactions. Such predictive insight
facilitates proactive, automated control strategies, such as dynamic aeration adjustment, which
significantly outperform reactive, schedule-based approaches. Furthermore, ML enables data-driven
microbial community engineering by analyzing metagenomic data to identify and promote key
functional taxa essential for biodegradation. For compost maturity assessment, ML frameworks support
rapid, non-destructive evaluation by integrating multi-sensor fusion data from electronic noses and
spectral sensors, or by interpreting visual features via computer vision, thus reducing the dependency on
time-consuming laboratory assays. In the realm of product valorization, ML acts as a powerful enabler
for precision resource recovery, facilitating the design of composts tailored for specific environmental
remediation tasks, such as predicting heavy metal immobilization efficiency or modeling the
degradation kinetics of organic pollutants. In sustainable agriculture, ML-driven decision support
systems recommend optimal compost-soil blends based on local edaphic conditions, while
simultaneously modeling mitigation pathways for biological risks, including antibiotic resistance genes
(ARGs). Despite these advancements, widespread industrial implementation faces barriers, primarily
the scarcity of high-quality, annotated datasets, which limits model generalizability and necessitates
solutions like transfer learning. Additionally, deploying computationally intensive models on edge-
computing hardware presents challenges regarding latency and sensor robustness. Finally, enhancing
the interpretability of "black-box" models through Explainable AI (XAI) is essential for fostering
practitioner trust. In conclusion, ML is driving a fundamental paradigm shift in OSW composting,
evolving it from an artisanal practice into a data-intelligent, precision-engineering discipline. Future
progress depends on developing integrated cyber-physical systems that combine robust sensing with
adaptive online learning, promising to optimize the complex trade-offs inherent in waste management
and enhance environmental sustainability at scale.

Keywords: Organic solid waste (OSW) composting; Machine learning (ML); Parameter

prediction; Intelligent control; Compost products; Data-driven intelligence
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Fig.1 Application of machine learning in organic solid waste composting
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machine learning support
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Fig.3 Machine learning drives composting technology

and compost product applications
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