试验研究

石灰和混凝沉淀相结合处理含 SO_4^2 和 \mathbb{F}^- 矿井水

张 新 , 尹锦锋

(平顶山工业职业技术学院,河南平顶山 467001)

摘要:采用石灰和混凝沉淀相结合的方法去除含 SO_4^{2-} 和 F^- 矿井水,并对去除机理及影响 因素进行了研究。结果表明:石灰沉淀的最佳处理条件为石灰乳浓度 5%,投加比 20:1,沉淀平衡时间为 6h;混凝沉淀的最佳条件为 PAC 溶液浓度 25%,用量 2 mL/100 mL,沉淀平衡时间为 20 min,pH 值 6~8,温度 20 \mathbb{C} 。处理后, SO_4^{2-} 脱除率大于 91.0%, SO_4^{2-} 含量小于 30 mg/L; F^- 脱除率大于 78.5%, F^- 含量小于 91.0% 91.0% 91.0% 91.0% 91.0% 91.0% 91.0% 91.0%

关键词:矿井水;沉淀;SO42-;F-

中图分类号: X703

文献标识码:A

文章编号:1006-8759(2010)05-0020-04

COMBINATION OF LIME AND COAGULATION REMOVING SO₄²-AND F⁻ FROM MINE WATER

ZHANG Xin , YIN Jin-feng

(Pingdingshan Industrial College of Technology, Pingdingshan 467001, China)

Abstract: This article adopted Combination of lime and coagulation removing SO_4^{2-} and F^- from mine water. The mechanism and its influencing factors are studied. The results showed that, the optimum treatment conditions of Lime-sedimentation are such that the mass density of lime milk is 5%, the ratio of wastewater to lime milk is 20:1, the sedimentation time is 6h; the optimum treatment conditions of PAC coagulation sedimentation are such that the mass density of PAC is 25%, the dosing of PAC is 2mL/100mL, the sedimentation time is 20 min, pH 6 to 8, the temperature 20°C. By this method, the removal ratio of SO_4^{2-} can reach over 91.0%, and the content of sulphate can lower to below 30mg/L; the removal ratio of F^- can reach over 78.5%, and the content of fluorine can lower to below 0.3mg/L.

Keywords: mine water; sedimentate; SO_4^{2-} ; F^-

在煤炭开采过程中,要排放大量的矿井水。目前,全国每年矿井排水量约22亿t,而利用率平均只有22%,其中北方国有煤矿每年矿井水排放量达14亿t,利用率还不足20%。毫无节制的排水不仅大大浪费水资源、增加了吨煤成本,而且还导致地面塌陷、地下水资源流失,水质恶化等环境问题。

针对矿井水中同时存在 SO42-和 F-的污染问

题,提出用传统的石灰沉淀法和 PAC 混凝沉淀相结合的处理方法去除矿井水中的 SO_4^2 和 F^- ,使出水中的 SO_4^2 和 F^- 浓度降低,符合达标排放^[3]。

1 实验部分

1.1 实验材料

实验药品为石灰和聚合氯化铝(PAC)。实验原水为中平能化集团十二矿矿井水。所测矿井水主要指标见表 1。

表 1 矿井水水质情况和地表水 类标准

项目	рН	$F^{-}/(mg \cdot L^{-1})$	SO ₄ ²⁻ /(mg·L ⁻¹)
水样	8.46	1.398	335
类标准	6~9	≤1.0	≤250

1.2 实验分析方法

实验分析方法四见表 2。

表 2 实验分析方法

分析项目	分析方法	检出限	测试仪器
pH 值	玻璃电极法	0~14	E-201-C 型 pH 计
F-/(mg • L-1)	选择电极法	1.0	氟离子选择电极
SO ₄ ²⁻ /(mg·L ⁻¹)	分光光度法	8.0	722 分光光度计

2 实验结果与讨论

2.1 石灰沉淀实验结果与分析

2.1.1 石灰乳浓度实验

称取 $5.0\ 10.0\ 15.0\ g$ 生石灰分别加蒸馏水 $100\ mL$ 配制成质量浓度为 $5\%\ 10\%\ 15\%$ 的石灰乳,备用。取 $3\%\ 100\ mL$ 矿井废水,分别加入上述配制的石灰乳 $10\ mL$,振荡摇匀,静置 $6\ h$,过滤后分别测定滤液 pH 值、 SO_4^2 和 F含量。结果如表 3。

表 3 不同浓度的石灰乳处理后的水质情况

项目	рН	SO ₄ ²⁻ /(mg·L ⁻¹)	F-/(mg·L-i)
5%石灰乳	13.09	124.81	1.348
10%石灰乳	13.17	179.44	1.387
15%石灰乳	13.43	159.07	1.326

从表 3 可以看出,浓度为 5%的石灰乳的处理效果比较明显。处理后水质的 pH 值相对较小,并且 SO_4^2 的去除率达到了 62.7%。因此,选用浓度为 5%的石灰乳。

2.1.2 石灰乳投加比实验

石灰乳投加量的大小关系到处理成本,需要确定石灰乳的投加量。取 5 份 150 mL 矿井废水,分别按照 10:1、15:1、20:1、25:1、30:1 的投药比,依次加入 15、10、7.5、6、5mL 浓度为 5%的石灰乳,振荡摇匀,静置沉降 6h。分析结果如表 4。

表 4 石灰乳投加量对处理效果的影响

石灰乳投入比	$\mathrm{SO_4}^{2-}/(\mathrm{mg} \cdot \mathrm{L}^{-1})$	$F^{\text{-}}/(mg \cdot L^{\text{-}1})$	рН
10:1	180.37	1.342	12.67
15:1	145.18	1.278	12.57
20:1	83.15	1.212	12.25
25:1	213.7	1.294	12.12
30:1	277.59	1.268	11.97

从表 4 中可以看出,按 20:1 的比例,投加浓度为 5%的石灰乳 7.5mL 时处理效果较明显。 SO_4^2 残留量为 83.15mg/L,即去除效率达到了 75.2%,而且 F的去除效果相对较好。因此,其最佳的投加比确定为 20:1。

2.1.3 沉淀平衡时间实验

取 7 份 100 mL 矿井水,分别加入 5 mL 浓度为 5%的石灰乳,振荡摇匀,依次沉淀不同时间,过滤后分别测定滤液 pH 值, SO_4^2 和 F^- 含量。结果如表 5。

表 5 沉淀时间与石灰处理效果的关系

沉淀时间	$\mathrm{SO_4^{2}/(mg \cdot L^{-1})}$	$F^{\text{-}\text{/}}(mg {\boldsymbol \cdot} L^{\text{-}\text{l}})$	рН
1/4	119.26	1.393	10.57
1/2	122.96	1.364	10.48
	103,52	1.342	11.80
2	111.85	1.283	11.13
3	123.89	1.262	11.15
6	83.15	1.212	12.11
12	82.22	1.257	11.15

从表 5 可以看出,当沉淀时间为 6 h 时, SO_4^{2-} 和 F-的残留量分别为 83.15 mg/L、1.212 mg/L,去除效果最为明显。而且也可看出并不是沉淀时间越长,去除率就越高。因此,沉淀平衡时间为 6h。

2.2 PAC 混凝沉淀实验结果与分析

原矿井废水中 SO_4^2 -含量为 335 mg/L, F-含量为 1.398 mg/L。经石灰沉淀实验去除后, 水中 SO_4^2 -离子含量为 83.15 mg/L、F-含量为 1.212 mg/L; 即 SO_4^2 -和 F-的去除率分别为 75.2%、13.3%。

由上述实验分析可知,石灰沉淀对 F-去除效果不明显,F-的残留量还大于地表水 类标准。因此,需要作进一步的处理,综合各种水处理剂的优缺点,选用聚合氯化铝(PAC)作为二级处理的药剂^[3]。按上述实验得出的结论,取 4 份 1 000 mL 矿井水,以最佳比 20:1,分别投加 50mL 浓度为 5%的石灰乳,振荡摇匀,静置沉降 6 h,过滤后的滤液作为 PAC 混凝沉淀试验的后续处理水样 A,水质结果如表 6。

表 6 水样 A 的水质情况

项目	$\mathrm{SO_4}^2$ -/(mg·L ⁻¹)	F-/(mg • L-1)	рН
水样A	83.15	1.212	12.11

2.2.1 PAC 浓度实验

称取 5.0、10.0、15.0、20.0、25.0 g 聚合氯化铝 (PAC),分别加蒸馏水 100 mL 配制成质量浓度为 5%、10%、15%、20%、25%。取 5 份 100 mL 水样 A,分别加入上述配制的五种不同浓度系列的聚合氯化铝(PAC)0.5mL,振荡摇匀,静置沉降 6 h,过滤后分别测定滤液 pH 值, SO_4 ²和 F⁻含量。结果见表 7。

表 7 不同浓度的 PAC 处理效果

PAC 浓度/%	$\mathrm{SO_4^{2-}}(\mathrm{mg} {}^{\raisebox{4ex}{$\scriptscriptstyle{\circ}$}} \mathrm{L^{-1}})$	$F^{\text{-}}/(mg \cdot L^{\text{-}l})$	рН
5%	82.22	1.203	11.51
10%	81.30	1.222	11.43
15%	80.37	1.212	11.20
20%	78.52	1.193	10.87
25%	73.89	1.059	9.87

由表 6、表 7 对比可以看出,25%的聚合氯化铝 (PAC) 对硫酸根和氟离子的去除效果比较明显,且可以使水样 pH 值明显下降。因此,选用浓度为 25%的聚合氯化铝(PAC)。

2.2.2 PAC 投加量实验

聚合氯化铝(PAC)的凝聚机理与溶液的 pH 值,温度等因数有关。当投加量过大时,将使胶体系统的电荷变号而出现再稳。另外从经济上考虑,投加量越大处理成本也越高。因此,需要确定最佳的 PAC 用量。

取 8 份 100 mL 水样 A, 分别加入 0.2、0.4、0.6、0.8、1、1.5、2、5mL 浓度为 25%的聚合氯化铝,振荡摇匀,静置沉降 6 h。分析结果表 8。

从表 8 可以看出,随着 PAC 的投加量的增表8 PAC 投加量与去除率的关系

PAC 加量	$\mathrm{SO_4}^{2-}/(\mathrm{mg}{}^{\raisebox{4ex}{$\scriptscriptstyle{\circ}$}}\mathrm{L}^{-1})$	$F^-/(mg \cdot L^{-1})$	рН
0.2	91.48	1.077	11.16
0.4	84.07	1.064	11.21
0.6	73.89	1.055	10.55
0.8	69.26	0.941	9.88
1	64.3	0.595	8.71
1.5	57.22	0.421	7.97
2	46.11	0.392	7.80
5	54.44	0.311	5.48

加,残留量越少即去除率越高,但投加量过大,如 投加 5mL 时,硫酸根的去除效果反而下降,且使 得水质成酸性。因此,最佳的聚合氯化铝的用量为 2mL。

2.2.3 沉淀平衡时间实验

取 10 份 100 mL 水样 A,分别加入 2 mL 浓度 为 25%的聚合氯化铝,振荡摇匀,沉淀 $10\20\30\60\120$ min, 过滤后分别测定 pH 值, SO_4^2 -和 F-的 含量。结果表 9。

表 9 时间与 PAC 混凝效果的关系

沉淀时间/min	$SO_4^{2-}/(mg \cdot L^{-1})$	F ⁻ /(mg•L ⁻¹)	рН
10	30.37	0.595	6.81
20	29.44	0.678	6.74
30	47.96	0.712	6.61
60	39.63	0.646	6.41
120	60.00	0.635	6.66

由表 9 可知,在确定 PAC 浓度及投加量的条件下,沉淀时间对去除效果的影响不是很明显, SO_4^2 -和 F-的趋势图曲线变化的幅度都不大,在沉淀时间为 20 min 时, SO_4^2 -和 F-的残留量达最小值。因此,最佳的沉淀平衡时间为 20 min。

2.2.4 pH 值对 PAC 混凝去除效果的影响实验

pH 值对胶体颗粒的表面电荷的电位和混凝剂的性质、作用等都有很大的影响。选择适当的pH 值可以节省大量的混凝剂,降低成本,混凝絮凝效果好;反之,如果 pH 值选择不适当,就会降低混凝和絮凝效果,不能形成混凝和絮凝沉淀,甚至使已经形成的絮凝体重新变成胶体溶液。因此,需要选择最佳的 pH 值。

取 10 份 100 mL 水样 A,用 HCl 或 NaOH 溶液调节废水的 pH 值分别至 4、6、8、10 后,再各加入 2 mL 浓度为 25%的聚合氯化铝,振荡摇匀,沉淀 20 min,过滤后分别测定测定 pH 值, SO_4^{2-} 和 F⁻的含量。结果表 10。

从表 10 可以看出,当其它条件一定时,pH 值

表 10 pH 值与去除率关系

pH 值	硫酸根去除率%	氟离子去除率%
4	60.0	34.2
6	99.7	89.3
8	91.5	91.6
10	10	56.3

范围为 6~8 时聚合氯化铝对硫酸根和氟离子的去除效果较好。考虑到实际矿井水偏碱性,因此,应用 HCl 调节溶液的 pH 值,使其在 6~8 间,以便提高去除率。

2.2.5 温度对 PAC 混凝效果的去除影响

用 PAC 作为混凝剂,水温是影响混凝反应中

的一个重要因数。水温过高,氢氧化铝的水合作用增强,导致水的沉淀速度放慢,影响药剂的去除效果。水温过低,铝离子很难形成吸附性能良好的大颗粒矾花,从而影响到沉淀速度。

取 8 份 100 mL 水样 A,各加入 2mL 浓度为 25%的聚合氯化铝,振荡摇匀,分别在温度 10、15、 20、25、30℃的条件下沉淀 20min。过滤后分别测定滤液的 pH 值、测定 pH 值, SO_4 ²⁻和 F⁻的含量。结果见表 11。

从表 11 中可以看出, 在 10℃~20℃范围内随 表 11 温度对处理效果的影响

温度/℃	SO ₄ 2-去除率/%	F-去除率/%	рН
10	58.6	52.1	5.73
15	73.2	77.2	6.96
20	79.0	83.5	7.01
25	76.8	80.3	6.70
30	69.7	79.0	6.79

着水温的升高,对 SO_4^{2-} 和 F^- 去除效果逐渐增加; 20℃后,随着水温的升高 SO_4^{2-} 和 F^- 的去除效果呈 下降趋势;pH 除 10℃外,其它变化基本不大。

3 结论

(1)石灰沉淀去除 SO_4^2 -和 F-的最佳条件为:

石灰乳浓度 5%,投加比 20:1,沉淀时间 6 h。

- (2)PAC 混凝沉淀去除 SO_4^2 -和 F 的最佳条件为:PAC 浓度 25%,PAC 用量 2 mL, 沉淀时间 20 min,pH 值 $6\sim8$,温度 20%。
- (3)原矿井水偏碱性,在上述最佳条件下,经石灰处理后 SO_4^2 -和 F-的去除效率分别达 75.2%、13.3%,氟的去除效果不明显,而且出水 pH 在 10 以上;加入聚合氯化铝后硫酸根和氟的去除效率分别可达 91.0%、78.5%以上,即出水中 SO_4^2 -和 F-含量可分别控制在 30~mg/L、0.3~mg/L 以下,pH 值可降至中性。

由以上结论可知,用石灰沉淀和 PAC 混凝沉淀相结合的方法去除矿井废水中的硫酸根和氟离子,达到了较好的效果。这种方法不仅弥补了单独石灰沉淀法的对氟去除效率不高的缺陷,而且其处理费用低、处理周期短。

参考文献

[1]何绪文,肖宝清,王平.废水处理与矿井水资源化[M].北京:煤炭工业出版社,2002.

[2]国家环境保护局.水和废水监测分析方法[M]第 3 版.北京:中国环境科学出版社,1989.

[3]徐金兰,王宝泉等.石灰沉淀-混凝沉淀处理含氟废水的试验[J]. 水处理技术,2003.10,29(5):282~285.

欢迎订阅《煤炭加工与综合利用》杂志

《煤炭加工与综合利用》杂志是中国煤炭加工利用协会主办的国内外公开发行刊物。主要报道内容:煤炭洗(筛)选加工,洁净有效利用,煤炭成型,焦化、气化、液化等煤化工,煤质检验及管理,煤炭燃烧及炉具,低热值燃料发电,煤矸石及灰渣的综合利用,煤系有用矿物资源的合理开发利用,水煤浆等新型煤基燃料,煤矿及煤炭利用中的环境保护及节能技术,生产经营管理经验等。本刊面向的读者及协会会员众多,发行范围广,广告效果好,欢迎广大读者订阅,欢迎企事业单位刊登广告、宣传产品或企业形象。

本刊统一刊号:CN 11 -2627/TD,ISSN 1005-8397;双月刊,正文 64 页,标准大 16 开。每期定价 15 元,全年 6 期 90 元(含普刷邮费,如需挂号另加 20 元)。本刊自办发行,请订户从中国煤

炭加工利用协会官方网站 www.ccpua.org 下载订单或向编辑部索取订单,直接向编辑部办理订阅手续。订阅方法如下:

- 1. 银行信汇:农业银行北京青年湖支行,帐号:190301040016406,户名:北京《煤炭加工与综合利用》杂志社有限公司。务请在信汇单上注明杂志款。在订单上注明是否挂号邮寄、是否要发票、收刊人姓名、详细地址、单位、邮政编码及联系电话。请将订单与银行汇单一起邮寄或传真至编辑部。
- 2.邮局汇款:请将订款和订单第二联及标签寄至《煤炭加工与综合利用》杂志编辑部:地址1:北京安定门外东河沿乙7号楼307室;邮编:100011;地址2:北京和平里北街21号中国煤炭加工利用协会,邮编:100713。编辑部电话/传真:010-64251130;Email;mtigly@163.com。